Advertisement

Development of Sindo1 for Extended Systems

  • A. Poredda
  • V. A. Lovchikov
  • K. Jug
Part of the NATO ASI Series book series (NSSB, volume 283)

Abstract

The semiempirical MO method SENDO1 is developed for the treatment of extended systems. The Large Unit Cell (LUC) approach is incorporated to achieve feasibility of calculations in real space. We present the resulting formulas and discuss convergence problems for the core Hamiltonian with respect to lattice sums. The influence of an increase of the LUC on bond length and binding energy per atom is investigated for several one- and two-dimensional systems.

Keywords

Binding Energy Bond Length Molecular Version Large Unit Cell Primitive Unit Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Bloch, Z. Physik 52, 555 (1928)CrossRefGoogle Scholar
  2. 2.
    F. Hund, Z. Physik 51, 759 (1928)CrossRefGoogle Scholar
  3. 2a.
    R.S. Mulliken, Phys. Rev. 32, 186, 761 (1928)CrossRefGoogle Scholar
  4. 3.
    C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)CrossRefGoogle Scholar
  5. 4.
    J.M. André, G. Leroy, Theoret. Chim. Acta 9, 123 (1967)CrossRefGoogle Scholar
  6. 5.
    G. DelRe, J. Ladik, G. Biczo, Phys. Rev. 155, 997 (1967)CrossRefGoogle Scholar
  7. 6.
    J.M. André, J. Chem. Phys. 50, 1536 (1969)CrossRefGoogle Scholar
  8. 7.
    C Pisani, R. Dovesi, C. Roetti, Hartree-Fock Ab Initio Treatment of Crystalline Systems, Lecture Notes in Chemistry, Vol. 48, Springer, Berlin-Heidelberg-New York 1988CrossRefGoogle Scholar
  9. 8.
    A.M. Dobrovotskii, R.A. Evarestov, phys. stat. sol. (b) 66, 83 (1974)CrossRefGoogle Scholar
  10. 9.
    R.A. Evarestov, M.I. Petrashen, E.M. Ledovskaya, phys. stat. sol. (b) 68, 453 (1975)CrossRefGoogle Scholar
  11. 10.
    R.A. Evarestov, phys. stat. sol. (b) 72, 569 (1975)CrossRefGoogle Scholar
  12. 11.
    R.A. Evarestov, M.I. Petrashen, E.M. Ledovskaya, phys. stat. sol. (b) 76, 377 (1976)CrossRefGoogle Scholar
  13. 12.
    R.A. Evarestov, V.A. Lovchikov, phys. stat. sol. (b) 79, 743 (1977)CrossRefGoogle Scholar
  14. 13.
    R.A. Evarestov, V.A. Lovchikov, phys. stat. sol. (b) 93, 469 (1979)CrossRefGoogle Scholar
  15. 14.
    A.H. Harker, F.P. Larkins, J. Phys. C 12, 2487 2497; 2509 (1979)CrossRefGoogle Scholar
  16. 15.
    J.E. Szymanski, P.V. Smith, J.A.D. Matthew, Phil Mag. B 51, 193 (1985)CrossRefGoogle Scholar
  17. 16.
    P.V. Smith, J.E. Szymanski, phys. stat. sol. (b) 134, 185 (1986)CrossRefGoogle Scholar
  18. 17.
    P.V. Smith, J.E. Szymanski, J.A.D. Matthew, phys. stat. sol. (b) 136, 261 (1986)CrossRefGoogle Scholar
  19. 18.
    B.I. Craig, P.V. Smith, phys. stat. sol. (b) 140, 491 (1987)CrossRefGoogle Scholar
  20. 19.
    B.I Craig, P.V. Smith, phys. stat. sol. (b) 146, 149 (1988)CrossRefGoogle Scholar
  21. 20.
    D.N. Nanda, K. Jug, Theoret. Chim. Acta 57, 95 (1980)CrossRefGoogle Scholar
  22. 21.
    K. Jug, D.N. Nanda, Theoret. Chim. Acta 57, 107, 131 (1980)CrossRefGoogle Scholar
  23. 22.
    K. Jug, R. Iffert, J. Schulz, Int. J. Quantum Chem. 32, 265 (1987)CrossRefGoogle Scholar
  24. 23.
    K. Jug, R. Iffert, J. Comput. Chem. 8, 1004 (1987)Google Scholar
  25. 23a.
    K. Jug, R. Iffert, J. Comput. Chem. 9, 51 (1988)Google Scholar
  26. 24.
    K. Jug, J. Schulz, J. Comput. Chem. 8, 1040 (1987)Google Scholar
  27. 24a.
    K. Jug, J. Schulz, J. Comput. Chem. 9, 40 (1988)Google Scholar
  28. 25.
    K. Jug, C.P.D. Dwivedi, Theor. Chim. Acta 59, 357 (1981)CrossRefGoogle Scholar
  29. 25a.
    K. Jug, C.P.D. Dwivedi, Theor. Chim. Acta 60, 73 (1981);CrossRefGoogle Scholar
  30. 25b.
    K. Jug, P.L. Müller, Theor. Chim. Acta 59, 365 (1981);CrossRefGoogle Scholar
  31. 25c.
    K. Jug, R. Iffert, Theor. Chim. Acta 62, 183 (1982);CrossRefGoogle Scholar
  32. 25d.
    K. Jug, R.C. Mishra, Int. J. Quantum Chem. 23, 887 (1983)CrossRefGoogle Scholar
  33. 26.
    P.L. Müller-Remmers, P.C. Mishra, K. Jug, J. Am. Chem. Soc. 106, 2538 (1984)CrossRefGoogle Scholar
  34. 26a.
    P.L. Müller-Remmers, P.C. Mishra, K. Jug, J. Am. Chem. Soc. 107, 7275 (1985);CrossRefGoogle Scholar
  35. 26b.
    S. Buss, K. Jug, J. Am. Chem. Soc. 109, 1044 (1987);CrossRefGoogle Scholar
  36. 26c.
    K. Jug, R. Iffert, P.L. Müller-Remmmers, J. Am. Chem. Soc. 110, 2045 (1988);CrossRefGoogle Scholar
  37. 26d.
    S. Behrens, K. Jug, J. Org. Chem. 55, 2288 (1990);CrossRefGoogle Scholar
  38. 26e.
    K. Jug, H.-R Schluff, J. Org. Chem. 56, 129 (1991)CrossRefGoogle Scholar
  39. 27.
    D.P Chong, Mol. Phys. 6, 67 (1965)CrossRefGoogle Scholar
  40. 28.
    R.D. Brown, K.R. Roby, Theoret. Chim. Acta 16, 175 (1970)CrossRefGoogle Scholar
  41. 29.
    K.R. Roby, Chem. Phys. Lett. 11, 6 (1971)CrossRefGoogle Scholar
  42. 30.
    J.A. Pople, D.L. Beveridge, Approximate Molecular Orbital Theory, p. 68, McGraw-Hill, New York 1970Google Scholar
  43. 31.
    M.P. Tosi, Solid State Physics 16, 107 (1964)CrossRefGoogle Scholar
  44. 32.
    F.E. Harris, Theoretical Chemistry Voll, p. 157, Academic Press, New York-San Francisco-London 1975Google Scholar
  45. 33.
    R.A. Evarestov, V.A. Lovchikov, II. Tupitsin, phys. stat. sol. (b) 117, 417 (1983)CrossRefGoogle Scholar
  46. 34.
    I.I. Tupitsin, R.A. Evarestov, V.A. Lovchikov, Sov. Phys. Solid State 25, 355 (1983)Google Scholar
  47. 35.
    R.A. Evarestov, A.V. Leko, Sov. Phys. Solid State 27, 519 (1985)Google Scholar
  48. 36.
    M. Causa, R. Dovesi, R. Orlando, C. Pisani, J. Phys. Chem. 92, 909 (1988)CrossRefGoogle Scholar
  49. 37.
    R. Kotowski, Z. Phys. B 33, 321 (1979)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • A. Poredda
    • 1
  • V. A. Lovchikov
    • 1
  • K. Jug
    • 1
  1. 1.Teoretische ChemieUniversität HannoverHannover 1Germany

Personalised recommendations