Ab Initio Perturbed Ion Calculations on Oxo- and Fluoroperovskites

  • M. Flórez
  • E. Francisco
  • V. Luaña
  • A. M. Pendás
  • J. M. Recio
  • M. Bermejo
  • L. Pueyo
Part of the NATO ASI Series book series (NSSB, volume 283)


The electronic structure of KMgF3, KZnF3, RbCaF3, and SrTiO3 has been calculated by means of the ab initio Perturbed Ion method at several values of the cell size. The study includes (a) analysis of core and valence energies and their variation with the crystal geometry; (b) obtaining of local ionic densities consistent with the lattice interactions; (c) calculation of crystal properties like lattice energy, equilibrium cell parameter, and bulk modulus, and (d) determination of separate ionic contributions to the chemical bonding. Particular attention is paid to the small but highly significant non-classical energy terms appearing in the formalism, as well as to the effects of the electron correlation in the computed properties. The global results show that the aiPI method gives as good a performance as that found for simpler crystals like alkali halides and MgO.


Bulk Modulus Cohesive Energy Orbital Energy Deformation Energy Lattice Energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Luaña and L. Pueyo, The ab initio perturbed ion model: a novel approach to the study of crystalline effects on atoms and ions. Application to NaF, J. Mol. Struct. (Theochem), 166: 215 (1988).CrossRefGoogle Scholar
  2. 2.
    V. Luafia and L. Pueyo, Simulation of ionic crystals: The ab initio perturbed-ion method and application to alkali hydrides and halides, Phys. Rev. B 41: 3800 (1990).CrossRefGoogle Scholar
  3. 3.
    V. Luafia, J.M. Recio, and L. Pueyo, Quantum-mechanical description of ions in crystals: electronic structure of magnesium oxide, Phys. Rev. B 42: 1791 (1990).CrossRefGoogle Scholar
  4. 4.
    A. Martin Pendás, E. Francisco, V. Luafia, and L. Pueyo, Theoretical calculation of the electronic structure of solid neon, submitted.Google Scholar
  5. 5.
    V. Luafia, M. Flórez, E. Francisco, A. Martín Pendás, J.M. Recio, M. Bermejo, and L. Pueyo, Quantum mechanical cluster calculations of solids: the ab initio Perturbed Ion method, this issue.Google Scholar
  6. 6.
    M. Rousseau, J.Y. Gesland, B. Hennion, G. Heger, and B. Renker, Low energy phonon dispersion curves of KZnF3 and CsCaF3. Solid State Commun. 38: 45 (1981).CrossRefGoogle Scholar
  7. 7.
    N. Lehner, H. Rauh, K. Strobel, R. Geick, G. Heger, J. Bouillot, B. Renker, M. Rousseau, and W. G. Stirling, Lattice dynamics, lattice instabilities and phase transitions in fluoride perovskites, J. Solid C: Solid State Phys. 15: 6545 (1982).CrossRefGoogle Scholar
  8. 8.
    C. Ridou, M. Rousseau, J. Bouillot, and C. Vettier, Anharmonicity in fluoroperovskites, J. Phys. C: Solid State Phys. 17: 1001 (1984).CrossRefGoogle Scholar
  9. 9.
    R. Navarro, R. Burriel, J. Bartolomé, and D. Gonzalez, Thermal properties of XMF cubic perovskites. II. Heat capacity of NH4ZnF3 and KZnF3. J. Chem. Thermodynamics 18: 1135 (1986).CrossRefGoogle Scholar
  10. 10.
    C. Ridou, M. Rousseau, B. Pernot, and J. Boiullot, High-temperature mean square ionic displacements in KZnF3, J. Phys. C: Solid State Phys. 19: 4847 (1986).CrossRefGoogle Scholar
  11. 11.
    R. Burriel, J. Bartolomé, D. Gonzalez, R. Navarro, C. Ridou, M. Rousseau, and A. Bulou, KZnF3 cubic perovskite. Heat capacity and lattice dynamics, J._ Phys. C: Solid State Phys. 20: 2819 (1987).CrossRefGoogle Scholar
  12. 12.
    R. Russi, G. A. Barbosa, M. Rousseau, and J.Y. Gesland, Vibronic contribution to the low temperature luminiscence of KZnF3:Ni. A quantitative approach, J. Physique 45: 1773 (1984).CrossRefGoogle Scholar
  13. 13.
    H. Onuki, F. Sugawara, M. Hirano, and Y. Yamaguchi, Ultraviolet photoemission study of perovskite fluoride KMF3(M: Mn, Fe, Co, Ni, Cu, and Zn) in the valence region, J. Phys, Soc. Jpn, 49: 2314 (1980).CrossRefGoogle Scholar
  14. 14.
    H. Onuki, F. Sugawara, M. Hirano, and Y. Yamaguchi, X-ray photoelectronspectroscopy of perovskite fluorides, J. Phys. Soc. Jpn., 41: 1807 (1976).CrossRefGoogle Scholar
  15. 15.
    E. Clementi and C. Roetti, Roothaan-Hartree-Fock atomic wave functions. Basis Functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z ≤ 54, At. Data Nuclear Data Tables, 14: 177 (1974).CrossRefGoogle Scholar
  16. 16.
    D. Babel and A. Tressaud, “Inorganic Solid Fluorides”, Academic Press, N.Y. (1985).Google Scholar
  17. 17.
    A. Bouamrane, J. Thourey, and J. P. Bastide, Enthalpies standard de formation des composés à structure perovskite KMgH3, KMgH2F, KMgHF2, KMgF3 et K2MgF4, Thermohimica Acta 159: 153 (1990).CrossRefGoogle Scholar
  18. 18.
    E. H.E. Pietsch, ed., “Gmelins Handbuch der Anorganischen Chemie”, 32: 1009, Verlag Chemie, Weinheim, Germany (1956).Google Scholar
  19. 19.
    M. Swanson, Natl. Bur. Stand.Circular 539, 3, 44 (1953).Google Scholar
  20. 20.
    B. N.N. Achar, G.R. Barsch, and L.E. Cross, Electrostriction, optic mode γ’s, and third-order elastic constants of SrTiO3 in the shell model, Phys. Rev. B 24: 1209 (1981).CrossRefGoogle Scholar
  21. 21.
    Bohr-Haber estimation from data in A.J. Cohen, and R. G. Gordon, Modified electron-gas study of the stability, elastic properties, and high-pressure behavior of MgO and CaO, Phys. Rev. B 14: 4593 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • M. Flórez
    • 1
  • E. Francisco
    • 1
  • V. Luaña
    • 1
  • A. M. Pendás
    • 1
  • J. M. Recio
    • 1
  • M. Bermejo
    • 2
  • L. Pueyo
    • 1
  1. 1.Departamento de Quimica Fisica y AnaliticaUniversidad de OviedoOviedoSpain
  2. 2.Departamento de FisicaUniversidad de OviedoOviedoSpain

Personalised recommendations