A Cluster Model of the Electronic Structure of Grain Boundaries with the Impurity Segregation and Particles Precipitation

  • A. Ya. Belenkii
Part of the NATO ASI Series book series (NSSB, volume 283)


During last 10–15 years a series of papers appeared whose authors tried to correlate the electronic spectra of valent states with the atomic structure and properties of grain boundaries in metalls and alloys. These studies are mainly based on greatly improved methods of the electronic structure calculations and on the modern experimental results for atomic structure (see, for example, Hashimoto et al., 1984).


Metallic Glass Amorphous Alloy Impurity Atom Electronic Structure Calculation Energetic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, O.K., 1984, Linear methods in band theory, in: “The Electronic Structure of Complex Systems”, P. Phariseau and W. M. Tammerman, eds., Plenum, New York.Google Scholar
  2. Ashby, M.F., Spaepen, F., and Williams, S., 1978, The structure of grain boundaries described as a packing of polyhadra, Acta Metall., 26: 1647.CrossRefGoogle Scholar
  3. Braspenning, P.J., Zeller, R., Lodder, A., and Dederichs, P.H., 1984, Self-consistent cluster calculation with correct embedding for 3d, 4d and some sp-impurities in copper, Phyg. Rev., 29: 703.CrossRefGoogle Scholar
  4. Bullet, D.W., 1980, The renaissance and quantitative development of the tight-binding method, Solid State Phyg., 35: 129.CrossRefGoogle Scholar
  5. Friedel, J., 1964, On the possible impact of quantum mechanics on physical metallurgy, Trans. AIME, 230: 616.Google Scholar
  6. Gaskell, P.H., 1983, Models for the structure of amorphous metals, in: “Glassy Metals. II”, H. Beck, and H.-J. Guntherodt, eds., Springer Verlag, Berlin.Google Scholar
  7. Hashimoto, M., Ishida, Y., Wakayama, S., Yamamoto, R., Doyama, M., and Fujiwara, T., 1984, Atomistic studies of grain boundary segregation in Fe-P and Fe-B alloys, Acta Metal., 32: 1,13.CrossRefGoogle Scholar
  8. Heine, V., 1980, Electronic structure from the point of view of the local atomic environment, Solid State Phys., 35: 1.CrossRefGoogle Scholar
  9. Herman, F., and Skillman, S., 1963, “Atomic Structure Calculations”, Prentice Hall, New Jersey.Google Scholar
  10. Moruzzi, V.L., Janak, J.F., Williams, A.R., 1978, “Calculated Electronic Properties of Metals”, Pergamon, New York.Google Scholar
  11. Oelhafen, P., 1983, Electronic spectroscopy on metallic glasses, in: “Glassy Metals. II”, H. Beck, and H.-J. Guntherodt, eds., Springer Verlag, Berlin.Google Scholar
  12. Pettifor, D.G., 1985, Phenomenological and microscopic theories of structure stability, Journal of Less-Common Met., 114: 7.CrossRefGoogle Scholar
  13. Pond, R.C., Smith, D.A., Vitek, V., 1979, Computer simulation of <110> tilt boundaries: structure and symmetry, Acta Met., 27: 235.CrossRefGoogle Scholar
  14. Seifert, G., Eschrig, H., 1985, LCAO-Xa calculations of transition metals clusters, Phys. Stat. Sol., bl27: 573.Google Scholar
  15. Smithells, C.J., 1976, “Metals Reference Book”, Butterworth, London.Google Scholar
  16. Speer, J.G., Michael, J.R., and Hansen, S.S., 1987, Carbonitride precipitation in niobium/vanadium microalloyd steels, Metal. Trans., A18: 211.Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • A. Ya. Belenkii
    • 1
  1. 1.Metal Physics DepartmentI.P. Bardin Insitute for Ferrous MetallurgyMoscowUSSR

Personalised recommendations