Advertisement

Cluster Approaches to Solid State Problems: Necessary Complements to Band Structure Considerations

  • W. C. Nieuwpoort
  • R. Broer
Part of the NATO ASI Series book series (NSSB, volume 283)

Abstract

Embedded clusters as models to study certain properties of real materials are defined as collections of atoms or ions at positions as they occur in solids and embedded in a (pseudo-) potential accounting for the short and long range, static and dynamic, influences of the rest of the material. The electronic structure is hence determined by the hamiltonian
$$ H = {H^{N}}_{{cluster}} + {V_{{emb}}} $$
(1)
where N indicates the number of electrons that are explicitly dealt with in the cluster chosen. The thus defined electronic problem can be treated by common ab initio or semi-empirical electronic structure methods and techniques, based on either wave functions or density functionals.

Keywords

Wave Function Hole State Ground State Wave Function Electronic Relaxation Core Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. F. Mott, Phil. Mag. 6 (1961) 281CrossRefGoogle Scholar
  2. 1a.
    J. Hubbard, Proc. Roy. Soc. (London) A 267 (1963) 238CrossRefGoogle Scholar
  3. 1b.
    J. Hubbard, Proc. Roy. Soc. (London) A 281 (1964) 401.CrossRefGoogle Scholar
  4. 2.
    H. Bethe, Ann. Physik, 3 (1929) 135.Google Scholar
  5. 2a.
    a survey of early applications can be found in C. J. Ballhausen, ‘Introduction to Ligand Field Theory’, McGraw-Hill (1962).Google Scholar
  6. 3.
    W. C. Nieuwpoort and G. Blasse, J. Inorg. Nucl. Chem., 30 (1968) 1635.CrossRefGoogle Scholar
  7. 4.
    N. W. Ashcroft and N. D. Mermin, ‘Solid State Physics’, Holt, Rinehart and Winston (New York, 1976), Ch. 10.Google Scholar
  8. 5.
    A. B. Kunz and D. L. Klein, Phys. Rev. B 17 (1978) 4614CrossRefGoogle Scholar
  9. 5a.
    A. B. Kunz and J. M. Vail, Phys. Rev. B 38 (1988) 1058.CrossRefGoogle Scholar
  10. 6.
    S. Horsch, P. Horsch and P. Fulde, Phys. Rev. B 28 (1983) 5977;CrossRefGoogle Scholar
  11. 6a.
    S. Horsch, P. Horsch and P. Fulde, Phys. Rev. B 29 (1984) 1870.CrossRefGoogle Scholar
  12. 7.
    P. S. Bagus and H. F. Schaefer III, J. Chem. Phys. 56 (1972) 224.CrossRefGoogle Scholar
  13. 8.
    R. Broer and W. C. Nieuwpoort, Chem. Phys. 51 (1981) 291.CrossRefGoogle Scholar
  14. 9.
    R. Broer and W. C. Nieuwpoort, Theor. Chim. Acta 73 (1988) 405.CrossRefGoogle Scholar
  15. 10.
    G. J. M. Janssen and W. C. Nieuwpoort, Phys. Rev. B 38 (1988) 3449.CrossRefGoogle Scholar
  16. 11.
    A. B. van Oosten, R. Broer, B. Th. Thole and W. C. Nieuwpoort, J. Less Comm. Met., 164&165 (1990) 1514.Google Scholar
  17. 12.
    S. Larsson, Chem. Phys. Lett. 32 (1975) 401; 40 (1976).CrossRefGoogle Scholar
  18. 13.
    G. van der Laan, C. Westra, C. Haas and G. A. Sawatzky, Phys. Rev. B 23 (1981) 4369.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • W. C. Nieuwpoort
    • 1
  • R. Broer
    • 1
  1. 1.Laboratory of Chemical Physics and Material Sciences CentreUniversity of GroningenGroningenThe Netherlands

Personalised recommendations