Advertisement

Ab Initio Cluster Studies of La2CuO4

  • R. L. Martin
Part of the NATO ASI Series book series (NSSB, volume 283)

Abstract

The discovery of the first high temperature cuprate superconductor by Bednorz and Müller1 has spurred enormous experimental and theoretical activity aimed at determining the “unique” aspects of the electronic structure of these materials2. The straightforward application of local-density-functional (LDF) band theory3 predicts the parent compound La2CuO4 to be a metal, when it is in fact an anti-ferromagnetic insulator with a gap of ~2eV. The local Coulomb interactions which drive the superexchange interaction4 are certainly at the heart of the anti-ferromagnetism and so one goal of electronic structure theory has been to develop simple models which capture these effects and can then be extended to the infinite system. At one extreme in the first principles approaches to this problem are the constrained LDF methods5,6. They essentially carve out a local region of space within the LDF band structure in order to generate the parameters for a tight-binding model including the appropriate Coulomb interactions. The latter are determined by monitoring the total energy of the system as a function of the charge constrained to reside within the local region. At the other extreme lie first principles cluster approaches7,8,9 whose essential philosophy is that the parameters characterizing a small cluster should be transferrable to the solid and largely determine its properties. Although the local interactions can be treated with great sophistication in this approach, approximations must be made concerning the treatment of the background used to imbed the cluster. Most efforts utilize a point-charge background for these materials; an extremely different environment from the metallic background of the constrained LDF approaches. The “truth” presumably lies somewhere between these two extremes.

Keywords

Natural Orbital Additional Hole Madelung Potential Full Valence Local Singlet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Bednorz and K.A. Müller, Z.Phys. B 64, 189(1986).CrossRefGoogle Scholar
  2. 2.
    For recent reviews see “High Temperature Superconductivity,” K.S. Bedell, D. Coffey, D.E. Meltzer, D. Pines, and J.R. Schrieffer, eds., Addison-Wesley(1990).Google Scholar
  3. 3.
    L.R Mattheiss, Phys. Rev. Lett. 58, 1371(1987).CrossRefGoogle Scholar
  4. 4.
    P.W. Anderson, Solid State Phys. 14, 99(1963)CrossRefGoogle Scholar
  5. 4a.
    P.J. Hay, J.C. Thiebault, and R. Hoffmann, JACS 97, 4884(1975).CrossRefGoogle Scholar
  6. 5.
    M.S. Hybertsen, M. Schlüter, and N.B. Christensen, Phys. Rev. B 39, 9028(1989).CrossRefGoogle Scholar
  7. 6.
    A.K. McMahan, J.F. Annett, and R.M. Martin, Phys. Rev. B 42, 6268(1990).CrossRefGoogle Scholar
  8. 7.
    Y. Guo, J. -M. Langlois, and W.A. Goddard III, Science 239, 896(1988).CrossRefGoogle Scholar
  9. 8.
    R.L. Martin and P.W. Saxe, Intern. J. Qunatum Chem. Symp. 22, 237(1988).CrossRefGoogle Scholar
  10. 9.
    H. Kamimura and M. Eto, J. Phys. Soc. Japan 59, 3053(1990).CrossRefGoogle Scholar
  11. 10.
    Mesa, P.W. Saxe, B.H. Lengsfield III, R.L. Martin, and M. Page.Google Scholar
  12. 11.
    R.J. Cava, A. Santoro, D.W. Johnson, Jr., and W.W. Rhodes, Phys. Rev. B 35, 6716(1987).CrossRefGoogle Scholar
  13. 12.
    N.W Winter, R.M. Pitzer, and D.K. Temple, J.Chem. Phys. 87, 2945(1987).CrossRefGoogle Scholar
  14. 13.
    R.L. Martin, Physica B 163, 583(1990).Google Scholar
  15. 14.
    N.W. Winter, R.M. Pitzer, and D.K. Temple, J.Chem. Phys. 86, 3549(1987).CrossRefGoogle Scholar
  16. 15.
    P.J. Hay and W.R. Wadt, J.Chem. Phys. 82, 270(1985)CrossRefGoogle Scholar
  17. 15a.
    W.R. Wadt and P.J. Hay, J.Chem. Phys. 82, 284(1985)CrossRefGoogle Scholar
  18. 15b.
    P.J. Hay and W.R. Wadt, J.Chem. Phys 82, 299(1985).CrossRefGoogle Scholar
  19. 16.
    T.H. Dunning and P.J. Hay in: “Modem Theoretical Chemistry, v. 3,” H.F. Schaefer III, ed., Plenum, New York(1977).Google Scholar
  20. 17.
    E.R. Davidson and D.W. Silver, Chem. Phys. Lett. 52, 403(1977).CrossRefGoogle Scholar
  21. 18.
    T. Koopmans, Physica 1, 104(1933).CrossRefGoogle Scholar
  22. 19.
    F.W. Bobrowicz and W. A. Goddard III in: “Modern Theoretical Chemistry, v. 3,” H.F. Schaefer in, ed., Plenum, New York(1977).Google Scholar
  23. 20.
    B.O. Roos, R.R. Taylor, and P.E.M. Siegbahn, Chem. Phys. 48, 157(1980)CrossRefGoogle Scholar
  24. 20a.
    B.O. Roos, Intern. J. Quantum Chem. Symp. 14, 175(1980).Google Scholar
  25. 21.
    J. Humlicek, M. Garriga, and M. Cardona, Sol. State Comm. 7, 589(1988).CrossRefGoogle Scholar
  26. 22.
    P.O. Löwdin, Phys. Rev. 97, 1474(1955)CrossRefGoogle Scholar
  27. 22a.
    E.R. Davidson, Rev. Mod. Phys. 44, 451(1972).CrossRefGoogle Scholar
  28. 23.
    R.L. Martin and P.J. Hay, in preparation.Google Scholar
  29. 24.
    S. Etamad, D.E. Aspnes, M.K. Kelly, R. Thompson, J. -M. Tarascon, and G.W. Hull, Phys. Rev. B 39, 9028(1988)Google Scholar
  30. 24a.
    see also S. Uchida, T. Ido, H. Takai, T. Arima, Y. Tokura, and S. Tajima, Phys. Rev. B 43, 7942(1991).CrossRefGoogle Scholar
  31. 25.
    M.S. Hybertsen, E.B. Stechel, M. Schlüter, and D.R. Jennison, Phys. Rev. B 41, 11068(1990).CrossRefGoogle Scholar
  32. 26.
    I.I. Mazin, etal. JETP Lett. 47, 113(1988).Google Scholar
  33. 27.
    Y.H. Kim, C.M. Foster, and AJ. Heeger, Syn. Metals 29, F603(1989).CrossRefGoogle Scholar
  34. 28.
    G.A. Sawatzky, this proceedings.Google Scholar
  35. 29.
    Z. Shen, J.W. Allen, J.J. Yeh, J. -S. Kang, W. Elus, W. Spicer, I. Lindau, M.B. Maple, Y.P. Dalichaouch, M.S. Torikachvili, and J.Z. Sun, Phys. Rev. B 36, 8414(1987).CrossRefGoogle Scholar
  36. 30.
    See, e.g. “Earlier and Recent Aspects of Superconductivity,” J.G. Bednorz and K.A. Müller, eds., Springer Verlag(1990).Google Scholar
  37. 31.
    F.C. Zhang and T.M. Rice, Phys. Rev. B 37, 3759(1988).CrossRefGoogle Scholar
  38. 32.
    H. Eskes and G.A. Sawatzky, Phys. Rev. Lett. 61, 1415(1988).CrossRefGoogle Scholar
  39. 33.
    H. Eskes, G.A. Sawatzky, and L.F. Feiner, Physica C 160, 424(1989).CrossRefGoogle Scholar
  40. 34.
    R.L. Martin, in preparation.Google Scholar
  41. 35.
    A.R. Bishop, R.L. Martin, K.A. Müller, and Z. Tesanovic, Z. Phys. B 76, 17(1989).CrossRefGoogle Scholar
  42. 36.
    R.G. Parr, “Quantum Theory of Molecular Electronic Structure,” W.J. Benjamin(1963).Google Scholar
  43. 37.
    J. Hirsch, Chem. Phys. Lett. 171, 161(1990).CrossRefGoogle Scholar
  44. 38.
    W. Nieuwpoort, this proceedings.Google Scholar
  45. 39.
    M.S. Islam, M. Leslie, S.M. Tomlinson, and C.R.A. Catlow, J.Phys. C 21, L109(1988).Google Scholar
  46. 40.
    E.B. Stechel, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • R. L. Martin
    • 1
  1. 1.Theoretical Division, MSB268Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations