Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 283))

  • 301 Accesses

Abstract

The potential energy surfaces for a number of quartet and sextet states of the system ReH 2 have been studied using ab initio CASSCF-CI and MCPF calculations. Different basis sets have been applied, and the treatment of correlation effects is discussed. The basis sets used are larger than the ones used in other investigations on dihydrides of third-row transition metals.

The global energy minimum of the ReH 2 system is obtained with the H 2 molecule infinitely separated from the Re atom in its 6 S state. The most stable bound state is linear 6Σ + g with R Re-H = 1.88Å 12.2 kcal/mole above the reference state. A 4 B 1 state with R Re-H = 1.72Å and a bond angle of 117 degrees is found 19.8 kcal/mole above the reference. Comparative calculations show that these two energy minima have close analogues for the H-Re-C H 3 system. The relationship between bonding energies and atomic spectra is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Rytter, Private communication

    Google Scholar 

  2. I. Panas, J. Schule, P. Siegbahn, and U. Wahlgren Chem. Phys. Lett. 149(3), 265–272 (1988)

    Article  CAS  Google Scholar 

  3. J. Almlöf, K. Faegri jr., and H. Grelland, Chem. Phys. Lett. 114(1), 53–57 (1985)

    Article  Google Scholar 

  4. O. Gropen, O. Boland, and U. Wahlgren, To be published

    Google Scholar 

  5. Odd Gropen, J. Comp. Chem. 8(7), 982–1003 (1987)

    Article  CAS  Google Scholar 

  6. S. Huzinaga, J. Chem. Phys. 42(4), 1293–1302 (1965)

    Article  Google Scholar 

  7. R. C. Raffenetti, J. Chem. Phys. 58, 4452 (1970)

    Article  Google Scholar 

  8. F. B. van Duijnevelt, IBM Technical Research Report No. RJ-945 (1971)

    Google Scholar 

  9. P. E. M. Siegbahn, J. Almlöv, A. Heiberg, and B. O. Roos, J. Chem. Phys. 74(4), 2384–2396 (1981)

    Article  CAS  Google Scholar 

  10. P. E. M. Siegbahn, Int. J. Quantum Chem. 23, 1869–1889 (1983)

    Article  CAS  Google Scholar 

  11. Molecule is a vectorized Gaussian integral program written by J. Almlöf. Sweden is a vectorized SCF-CASSCF, direct CI and CCI program written by P. Siegbahn, B. Roos, P. Taylor, A. Heiberg, J. Almlöf, S. Langhoff, and D. P. Chong

    Google Scholar 

  12. C. E. Moore, Atomic Energy Levels, U. S. Dept. of commerce, Nat. Bur. Stand., U. S. Government print office, Washington D. C. 1958.

    Google Scholar 

  13. R. Ahlrichs, P. Scharf, and C. Erhardt, J. Chem. Phys. 82, 890 (1985)

    Article  CAS  Google Scholar 

  14. R. Ahlrichs and P. Scharf, in: Ab initio methods in quantum chemistry — part 1 ed. K. P. Lawley, Wiley, New York 1987 p. 501

    Google Scholar 

  15. R. J. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143(5), 413–420 (1988)

    Article  CAS  Google Scholar 

  16. D. P. Chong and S. R. Langhoff, J. Chem. Phys. 84, 5606–5610 (1986)

    Article  CAS  Google Scholar 

  17. S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61–72 (1974)

    Article  CAS  Google Scholar 

  18. C. W. Bauschlicher, jr., S. R. Langhoff, H. Partridge, and L. A. Barnes, J. Chem. Phys. 91(4), 2399 (1989)

    Article  CAS  Google Scholar 

  19. M. Blomberg, P. Siegbahn, U. Nagashima, and J. Wennerberg, J. Am. Chem. Soc. 113, 424 (1991)

    Article  CAS  Google Scholar 

  20. K. Balasubramanian and J. Z. Wang, J. Chem. Phys. 91(12), 7761–7771 (1989)

    Article  CAS  Google Scholar 

  21. K. Balasubramanian and D. Liao, J. Phys. Chem. 92, 6259–6264 (1988)

    Article  CAS  Google Scholar 

  22. U. Brandemark, M. Blomberg, L. Pettersson, and P. Siegbahn, J. Phys. Chem. 88, 4617–4621 (1984)

    Article  CAS  Google Scholar 

  23. K. Balasubramanian and D. Dai, J. Chem. Phys. 93(10), 7243–7255 (1990)

    Article  CAS  Google Scholar 

  24. J. J. Low and W. A. Goddard, Org. Met. 5(4), 609–622 (1986)

    CAS  Google Scholar 

  25. E. Poulain, J. Garcia-Prieto, and M. E. Ruiz, Int. J. Quantum Chem. 29, 1181–1190 (1986)

    Article  CAS  Google Scholar 

  26. K. Balasubramanian, J. Chem. Phys. 87(5), 2800–2805 (1987)

    Article  CAS  Google Scholar 

  27. M. Sjøvoll and O. Gropen, To be published

    Google Scholar 

  28. K. Balasubramanian and M. Z. Liao, J. Phys. Chem. 92, 361–364 (1988)

    Article  CAS  Google Scholar 

  29. I. Panas, P. Siegbahn, and U. Wahlgren, in Computational Chemistry — The Challenge of d and f electrons, eds. D. Salahub and M. Zerner, Toronto 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Swang, O., Fœgri, K., Gropen, O. (1992). Theoretical Study of ReH2 . In: Pacchioni, G., Bagus, P.S., Parmigiani, F. (eds) Cluster Models for Surface and Bulk Phenomena. NATO ASI Series, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6021-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6021-6_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6023-0

  • Online ISBN: 978-1-4684-6021-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics