Theoretical Study of ReH2

  • O. Swang
  • K. Fœgri
  • O. Gropen
Part of the NATO ASI Series book series (NSSB, volume 283)


The potential energy surfaces for a number of quartet and sextet states of the system ReH 2 have been studied using ab initio CASSCF-CI and MCPF calculations. Different basis sets have been applied, and the treatment of correlation effects is discussed. The basis sets used are larger than the ones used in other investigations on dihydrides of third-row transition metals.

The global energy minimum of the ReH 2 system is obtained with the H 2 molecule infinitely separated from the Re atom in its 6 S state. The most stable bound state is linear 6Σ g + with R Re-H = 1.88Å 12.2 kcal/mole above the reference state. A 4 B 1 state with R Re-H = 1.72Å and a bond angle of 117 degrees is found 19.8 kcal/mole above the reference. Comparative calculations show that these two energy minima have close analogues for the H-Re-C H 3 system. The relationship between bonding energies and atomic spectra is discussed.


Potential Energy Surface Primitive Function Quartet State Rhenium Atom Relativistic Effective Core Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Rytter, Private communication Google Scholar
  2. [2]
    I. Panas, J. Schule, P. Siegbahn, and U. Wahlgren Chem. Phys. Lett. 149(3), 265–272 (1988)CrossRefGoogle Scholar
  3. [3]
    J. Almlöf, K. Faegri jr., and H. Grelland, Chem. Phys. Lett. 114(1), 53–57 (1985)CrossRefGoogle Scholar
  4. [4]
    O. Gropen, O. Boland, and U. Wahlgren, To be published Google Scholar
  5. [5]
    Odd Gropen, J. Comp. Chem. 8(7), 982–1003 (1987)CrossRefGoogle Scholar
  6. [6]
    S. Huzinaga, J. Chem. Phys. 42(4), 1293–1302 (1965)CrossRefGoogle Scholar
  7. [7]
    R. C. Raffenetti, J. Chem. Phys. 58, 4452 (1970)CrossRefGoogle Scholar
  8. [8]
    F. B. van Duijnevelt, IBM Technical Research Report No. RJ-945 (1971)Google Scholar
  9. [9]
    P. E. M. Siegbahn, J. Almlöv, A. Heiberg, and B. O. Roos, J. Chem. Phys. 74(4), 2384–2396 (1981)CrossRefGoogle Scholar
  10. [10]
    P. E. M. Siegbahn, Int. J. Quantum Chem. 23, 1869–1889 (1983)CrossRefGoogle Scholar
  11. [11]
    Molecule is a vectorized Gaussian integral program written by J. Almlöf. Sweden is a vectorized SCF-CASSCF, direct CI and CCI program written by P. Siegbahn, B. Roos, P. Taylor, A. Heiberg, J. Almlöf, S. Langhoff, and D. P. ChongGoogle Scholar
  12. [12]
    C. E. Moore, Atomic Energy Levels, U. S. Dept. of commerce, Nat. Bur. Stand., U. S. Government print office, Washington D. C. 1958.Google Scholar
  13. [13]
    R. Ahlrichs, P. Scharf, and C. Erhardt, J. Chem. Phys. 82, 890 (1985)CrossRefGoogle Scholar
  14. [13a]
    R. Ahlrichs and P. Scharf, in: Ab initio methods in quantum chemistry — part 1 ed. K. P. Lawley, Wiley, New York 1987 p. 501Google Scholar
  15. [14]
    R. J. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143(5), 413–420 (1988)CrossRefGoogle Scholar
  16. [15]
    D. P. Chong and S. R. Langhoff, J. Chem. Phys. 84, 5606–5610 (1986)CrossRefGoogle Scholar
  17. [16]
    S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61–72 (1974)CrossRefGoogle Scholar
  18. [17]
    C. W. Bauschlicher, jr., S. R. Langhoff, H. Partridge, and L. A. Barnes, J. Chem. Phys. 91(4), 2399 (1989)CrossRefGoogle Scholar
  19. [18]
    M. Blomberg, P. Siegbahn, U. Nagashima, and J. Wennerberg, J. Am. Chem. Soc. 113, 424 (1991)CrossRefGoogle Scholar
  20. [19]
    K. Balasubramanian and J. Z. Wang, J. Chem. Phys. 91(12), 7761–7771 (1989)CrossRefGoogle Scholar
  21. [20]
    K. Balasubramanian and D. Liao, J. Phys. Chem. 92, 6259–6264 (1988)CrossRefGoogle Scholar
  22. [21]
    U. Brandemark, M. Blomberg, L. Pettersson, and P. Siegbahn, J. Phys. Chem. 88, 4617–4621 (1984)CrossRefGoogle Scholar
  23. [22]
    K. Balasubramanian and D. Dai, J. Chem. Phys. 93(10), 7243–7255 (1990)CrossRefGoogle Scholar
  24. [23]
    J. J. Low and W. A. Goddard, Org. Met. 5(4), 609–622 (1986)Google Scholar
  25. [23a]
    E. Poulain, J. Garcia-Prieto, and M. E. Ruiz, Int. J. Quantum Chem. 29, 1181–1190 (1986)CrossRefGoogle Scholar
  26. [23b]
    K. Balasubramanian, J. Chem. Phys. 87(5), 2800–2805 (1987)CrossRefGoogle Scholar
  27. [23c]
    M. Sjøvoll and O. Gropen, To be published Google Scholar
  28. [24]
    K. Balasubramanian and M. Z. Liao, J. Phys. Chem. 92, 361–364 (1988)CrossRefGoogle Scholar
  29. [25]
    I. Panas, P. Siegbahn, and U. Wahlgren, in Computational Chemistry — The Challenge of d and f electrons, eds. D. Salahub and M. Zerner, Toronto 1988Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • O. Swang
    • 1
  • K. Fœgri
    • 1
  • O. Gropen
    • 2
  1. 1.Department of ChemistryUniversity of OsloOslo 3Norway
  2. 2.Department of Mathematical and Physical SciencesUniversity of TromsoTromsoNorway

Personalised recommendations