Modeling Chemisorption Processes with Metal Cluster Systems: III. Model Thio-Alkyls on Gold Surfaces

  • H. Sellers
  • A. Ulman
  • Y. Shnidman
  • J. E. Eilers
Part of the NATO ASI Series book series (NSSB, volume 283)


We have performed RECP Hartree-Fock + MBPT2 calculations of the equilibrium adsorbate structures and force constants of SH and SCH3 chemisorbed on the Au(111) and Au(100) surfaces. We propose coverage schemes for thio-alkyl adsorbates for both surfaces. On both surfaces and for both adsorbates we find the surface -S-X angle to be linear in the hollow site. The on-top site is an energy maximum on both surfaces. The bonding scheme between the sulfur atom and the gold surface possesses sigma and pi character. A significant amount of backbonding is evident in these systems through the mixing of the (fully occupied) sulfur pi orbitals and the unoccupied pi orbitals of the cluster model of the surface. We attribute the straightening of the surface -S-X angle in going from the on-top site to the hollow site to the backbonding interaction. The force field parameters and structures we determine are necessary for molecular dynamics studies of self-assembling thio-alkyl monolayers on gold. We propose coverage schemes that are consistent with available observational data.


Force Constant Cluster Model Gold Surface Gold Atom Hollow Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Adamson, A.W. Physical Chemistry of Surfaces; Wiley: New York, 1976.Google Scholar
  2. (2).
    Zisman, W.A. In Friction and Wear; Davis, R., Ed.: Elsevier: New York, 1959.Google Scholar
  3. (3).
    Mathieson, R.T. Nature (London) 1960, 186, 301.CrossRefGoogle Scholar
  4. (4).
    Hagihara, H.; Uchikoahi, H. Nature (London) 1954, 174, 80.CrossRefGoogle Scholar
  5. (5).
    Aliara, D.L.; Nuzzo, R.G. Langmulr 1985, 1, 45.CrossRefGoogle Scholar
  6. (6).
    Day, D.; Lando, J.B. Macromolecules 1980, 13, 1483.CrossRefGoogle Scholar
  7. (7).
    Strong, L.; Whitesides, G.M. Langmulr 1988, 4, 546.CrossRefGoogle Scholar
  8. (8).
    Nuzzo, R.G.; Dubois, L.H.; Aliara, D.L. J. Am. Chem. Soc. 1990, 112, 558.CrossRefGoogle Scholar
  9. (9).
    Whitesides, G.M.; Laibinis, P.E. Langmulr 1990, 6, 87.CrossRefGoogle Scholar
  10. (10).
    Wilson, M.D.; Ferguson, G.S.; Whitesides, G.M. J. Am. Chem. Soc. 1990, 112, 1244.CrossRefGoogle Scholar
  11. (11).
    Bain, C.D.; Troughton, E.B.; Tao, Y.-T./ Evall, J.; Whitesides, G.M.; Nuzzo, R.G. J. Am. Chem. Soc. 1989, 111, 321.CrossRefGoogle Scholar
  12. (12).
    Bain, C.D.; Whitesides, G.M. J. Am. Chem. Soc. 1988, 110, 5897.CrossRefGoogle Scholar
  13. (13).
    Nuzzo, R.G.; Fusco, F.A.; Aliara, D.L. J. Am. Chem. Soc. 1987, 109, 2358CrossRefGoogle Scholar
  14. (13)a.
    Nuzzo, R.G.; Fusco, F.A.; Aliara, D.L. J. Am. Chem. Soc. 1987, 109, 733.CrossRefGoogle Scholar
  15. (14).
    Tidswell, I.M.; Ocko, B.M.; Persham, P.; Wasserman, S.R.; Whitesides, G.M.; Axe, J.D. Phys. Rev. 1990, 41, 1111.CrossRefGoogle Scholar
  16. (15).
    Chidsey, C.E.D.; Liu, G.Y.; Rowntree, P.; Scoles, G. J. Chem. Phys. 1989, 91, 4421.CrossRefGoogle Scholar
  17. (16).
    Dutta, P. Phase Transition in Surface Films (H. Traub, G. Torzo, H. Lauter and S. Fain, Eds.; Plenum, New York, 1991).Google Scholar
  18. (17).
    Finklea, H.O.; Avery, S.; Lynch, M.; Furtsch, T.; Langmulr 1987, 3, 409.CrossRefGoogle Scholar
  19. (18).
    Porter, M.D.; Bright, T.B.; Aliara, D.L.; Chidsey, C.F.D. J. Am. Chem. Soc. 1987, 109, 3559.CrossRefGoogle Scholar
  20. (19).
    Ulman, A.; Eilers, J.E.; Tillman, N. Langmulr 1989, 5, 1147.CrossRefGoogle Scholar
  21. (20).
    Hautman, J.; Klein, M.L. J. Chem. Phys. 1989, 91, 4994.CrossRefGoogle Scholar
  22. (21).
    Hautman, J.; Bareman, J.P.; Mar, W.; Klein, M.L. preprint.Google Scholar
  23. (22).
    Huzinaga, S.; Klubokowski M.; Sakai, Y. J. Phys. Chem. 1984, 88, 4880CrossRefGoogle Scholar
  24. (22)a.
    Andzelm, J.; Huzinaga, S.; Klubokowski, M.; Radzio, E. Mol. Phys. 1984, 52, 1495CrossRefGoogle Scholar
  25. (22)b.
    Huzinaga, S.; Seijo, L.; Barandiaran, Z.; Klubowski, M. J. Chem. Phys. 1987, 86, 2132.CrossRefGoogle Scholar
  26. (22)c.
    Bonifacio, V.; Huzinaga, S. J. Chem. Phys. 1974, 60, 2779.CrossRefGoogle Scholar
  27. (23).
    Panas, I.; Schule, J.; Siegbahn, P.E.M.; Wahlgren, U.; Chem. Phys. Lett. 1988, 149, 26.CrossRefGoogle Scholar
  28. (24).
    Almlöf, J.; Faegri, K., Jr.; Grelland, H.H. Chem. Phys. Lett. 1986, 114, 53.CrossRefGoogle Scholar
  29. (25).
    Sellers, H. L. Chem. Phys. Lett. accepted, in press.Google Scholar
  30. (26).
    Sellers, H.L. J. Phys. Chem. 1990, 94, 8329.CrossRefGoogle Scholar
  31. (27).
    Sellers, H.L. Chem. Phys. Lett. 1990, 170, 5.CrossRefGoogle Scholar
  32. (28).
    Simandiras, E.D.; Rice, J.E.; Lee, T.J.; Amos, R.D.; Handy, N.C. J. Chem. Phys. 1988, 88, 3187.CrossRefGoogle Scholar
  33. (29).
    Gropen, O. J. Comp. Chem. 1987, 8, 982.CrossRefGoogle Scholar
  34. (30).
    Almlöf, J.; Faegri Jr., K.; Feyereisen, M.; Korsell, K., DISCOis a direct SCF and MBPT2 computer program. The NCSA version has been extensively modified for these metal clustersystems.Google Scholar
  35. (31).
    Maca, F.; Scheffler, M.; Berndt, W. Surf. Sci. 1985, 160, 467.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • H. Sellers
    • 1
  • A. Ulman
    • 2
  • Y. Shnidman
    • 2
  • J. E. Eilers
    • 2
  1. 1.National Center for Supercomputing Applications, Beckman Institute for Advanced Science and TechnologyUniversity of IllinoisUrbanaUSA
  2. 2.Corporate Research Laboratories and Computational, Science LaboratoryEastman Kodak CompanyRochesterUSA

Personalised recommendations