Ab Initio Calculations of Stationary Points on the Potential Energy Surface and Determination of Kinetic Isotope Effects for the Reaction of CO with Cu2O

  • K. Poljanec
  • M. Hodosceck
  • I. Kobal
Part of the NATO ASI Series book series (NSSB, volume 283)

Abstract

The mechanism of the reaction of CO with Cu2O was investigated in our laboratory by studying carbon kinetic isotope effects; the experimental work was carried out some years ago [1], while their theoretical interpretation according to Bigeleisen formalism [2] was published recently [3].

Keywords

Tate Rium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Vernik, diploma thesis, University of Ljubljana (1968).Google Scholar
  2. [2]
    J. Bigeleisen, M. Wolfsberg, Adv. Chem. Phys., 1, 15, (1958).CrossRefGoogle Scholar
  3. [3]
    M. Senegačnik, K. Lenarčič, J. Vernik, US poročilo DP-4939, (1987).Google Scholar
  4. [4]
    I. Kobal, M. Senegačnik and B. Barlič, J. Chem. Phys., 69, 174, (1978).CrossRefGoogle Scholar
  5. [5]
    I. Kobal, M. Senegačnik and H. Kobal, J. Chem. Phys., 78, 1815, (1983).CrossRefGoogle Scholar
  6. [6]
    I. Kobal and M. Senegačnik, J. Chem. Soc. Faraday Trans., 86, 2283, (1990).CrossRefGoogle Scholar
  7. [7]
    S. Glasstone, K. Laidler and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York, (1941).Google Scholar
  8. [8]
    K. Laidler, Chemical Kinetics, Mc Graw Hill, (1965).Google Scholar
  9. [9]
    GAUSSIAN 88, M.J. Frisch, J.S. Binkley, H.B. Schlegel, K. Raghavachari, C.F. Melius, R.L. Martin, J.J.P. Stewart, L.R. Kahn, D.J. Defrees, R. Seeger, R.A. Whiteside, D.J. Fox, E.M. Fleuder, C. Gonzales, J. Baker, S. Topial, M. Head-Gordon and J.A. Pople, Gaussian Inc., Pittsburgh PA, (1988).Google Scholar
  10. [10]
    C.W. Bauschlicher, S.P. Walch and P.E.M. Siegbahn, J. Chem. Phys. 78, 3347, (1983).CrossRefGoogle Scholar
  11. [11]
    H.J. Werner and R.L. Martin, Chem. Phys. Lett. 113, 451, (1985).CrossRefGoogle Scholar
  12. [12]
    S.R. Langhoff and C.W. Bauschlicher, J. Chem. Phys. 84, 4485, (1986).CrossRefGoogle Scholar
  13. [13]
    K.K. Sunil and K.D. Jordan, Chem. Phys. Lett. 128, 363, (1986).CrossRefGoogle Scholar
  14. [14]
    J.B. Collins, P.v.R. Schleyer, J.S. Binkley and J.A. Pople, J. Chem. Phys., 64, 5142, (1976).CrossRefGoogle Scholar
  15. [15]
    K.D. Dobbs and W.J. Hehre, J. Comp. Chem., Vol. 8, No. 6, 861, (1987).CrossRefGoogle Scholar
  16. [16]
    A.K. Rappe, T.A. Smedley and W.A. Goddard, J. Phys. Chem. 85, 2607, (1981).CrossRefGoogle Scholar
  17. [17]
    S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai and H. Tatewaki, Phys. Sci. Data, Vol. 16 (Ed. by S. Huzinaga), Elsevier, Amsterdam, (1984).Google Scholar
  18. [18]
    A.J.H. Wachters, J. Chem. Phys., Vol. 52, No. 3, (1970).Google Scholar
  19. [19]
    C.E. Moore, Atomic energy levels, Circular 467, Natl. Bur. Std., Washington, USA (1949).Google Scholar
  20. [20]
    S.F. Boys, F. Bernardi, Mol. Phys., 19, 558, (1970).CrossRefGoogle Scholar
  21. [21]
    A. Johansson and P. Kollman, Theor. Chem. Acta, 29, 167, (1973).CrossRefGoogle Scholar
  22. [22]
    D. Hadzi, M. Hodoscek, T. Solmajer and F. Avbelj, Croat. China. Acta, 57, 1065, (1984).Google Scholar
  23. [23]
    J. Tomasi, in: Chemical Applications of Atomic and Molecular Electrostatic Potentials, P. Politzer and D.G. Truhlar (Eds.), Plenum Press New York, p. 257, (1981).Google Scholar
  24. [24]
    A. Pullman and B. Pullman, Q. Rev. Biophys. 14, 289, (1981).CrossRefGoogle Scholar
  25. [25]
    P. A. Kollman, J. Amer. Chem. Soc. 99, 4875, (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • K. Poljanec
    • 1
  • M. Hodosceck
    • 2
  • I. Kobal
    • 1
  1. 1.J. Stefan InstitutLjubljanaYugoslavia
  2. 2.Boris Kidric Institute of ChemistryLjubljanaYugoslavia

Personalised recommendations