Advertisement

Partial Optimization of Adsorbates on Clusters: Oxygen on Al(111)

  • J. H. Head
Part of the NATO ASI Series book series (NSSB, volume 283)

Abstract

Using our recently developed partial optimization algorithm we apply ab initio SCF cluster calculations to investigate surface atom relaxation effects for O on Al(111). Like in LEED experiments we find an outward expansion of the surface like atoms in the optimizations of the bare Al10, Al18 and Al19 clusters. When we optimize the position of oxygen in Al18O keeping all the Al atoms at their bulk like geometries we obtain results similar to those of previous workers. However, when we include O and its Al nearest neighbors in the partial optimization we find large changes in the Al18O electronic structure, including the O- anion changing to O2- above the surface and the reverse change for O below the surface.

Keywords

Relaxation Energy Vertical Height Mulliken Charge Mulliken Population Analysis Partial Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    P. Pulay in ‘Applications of Electronic Structure Theory’, ed. H. F. Schaefer, Plenum Press, New York, Vol. 4, 1977, p. 153Google Scholar
  2. 1)a.
    P. Jorgensen and J. Simons, eds., ‘Geometrical Derivatives of Energy Surfaces and Molecular Properties’, D. Riedel, Dordrecht, 1986Google Scholar
  3. 1)b.
    P. Pulav, Adv. Chem. Phys., 69, 241 (1987).CrossRefGoogle Scholar
  4. 2.
    J. D. Head and M. C. Zerner, Adv. Quan. Chem., 20, 241 (1989)Google Scholar
  5. H. B. Schlegel, Adv. Chem. Phys., 67, 249 (1987).CrossRefGoogle Scholar
  6. 3).
    J. D. Head, J. Comput. Chem., 11, 67 (1990).CrossRefGoogle Scholar
  7. 4).
    K. Christmann, Z. Phys. Chem. N. F. Bd., 154, 145 (1987)CrossRefGoogle Scholar
  8. 4)a.
    G. A. Somorjai and M. A. Van Hove, Prog, in Surf. Sci., 30, 201 (1989).CrossRefGoogle Scholar
  9. 5).
    I. P. Batra and L. Kleinman, J. Elec. Spec, and Rel. Phenom., 33, 175–241 (1984).CrossRefGoogle Scholar
  10. 6).
    J. Stohr, L. I. Johansson, S. Brennan, M. Hecht and J. N. Miller, Phys. Rev. B22, 4052 (1980).Google Scholar
  11. 7).
    P. S. Bagus, F. Parmigiani, G. Polzonetti, F. Illas and C. R. Brundle, Surf. Sci. in the press.Google Scholar
  12. 8).
    G. Pacchioni and P. Fantucci, Surf. Sci., 204, 587 (1988).CrossRefGoogle Scholar
  13. 9).
    GAMESS, General Atomic and Molecular Electronic Structure System, M. W. Schmidt, J. A. Boatz, K. K. Baldriclge, S. Koseki, M. S. Gordon, S. T. Elbert and B. Lam, QCPE Bulletin, 7, 115 (1987).Google Scholar
  14. 10).
    P. J. Hay and W. R. Wadt, J. Chem. Phys., 82, 270 (1985).CrossRefGoogle Scholar
  15. 11).
    T. H. Dunning, Jr., and P. J. Hay in ‘Methods of Electronic Structure Theory’, ed. H. F. Schaefer, Plenum Press, New York, 1977, p 1.Google Scholar
  16. 12).
    N. W. Ashcroft and N. D. Mermin, in ‘Solid State Physics’, Holt, Rinehart and Winston, New York, 1976.Google Scholar
  17. 13).
    C. W. Bauschlicher and L. G. M. Pettersson, J. Chem. Phys., 87, 2198 (1987).CrossRefGoogle Scholar
  18. 14).
    R. Broer, I. P. Batra and P. S. Bagus, Philos. Mag. B51, 243 (1985).Google Scholar
  19. 15).
    V. Martinez, F. Soria, M. C. Munoz and J. L. Sacedon, Surf. Sci., 128, 424 (1983).CrossRefGoogle Scholar
  20. 16).
    B. N. Cox and C. W. Bauschlicher, Surf. Sci., 115, 15 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • J. H. Head
    • 1
  1. 1.Department of ChemistryUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations