High Temperature Molecular Dynamics Studies of Cluster Growth and Polymer Degradation

  • E. Blaisten-Barojas
Part of the NATO ASI Series book series (NSSB, volume 283)


Computer simulations have added a new scope to scientific research in the rapidly growing field of cluster physics and chemistry. In the last few years, numerous novel innovations in experimental cluster measurements and technologies led to the discovery of a richness of cluster geometries built up in many cases by cluster units with magic number of atoms.1,2 Clusters in the liquid state have also been postulated.3 Heterogeneous catalysis, nucleation, physisorption, fragmentation either thermal or caused by energy or charge instabilities are some of the phenomena that need theoretical support- As is common in scientific investigation, the validity of a comparison between theoretical predictions and experiments may be sometimes questioned because of the complexity of the experimental interpretation as compared to the simplicity of the theoretical model. Furthermore, the testing of a theoretical prediction may be restricted because of limitations in the experimental state-of-the-art. Computer experiments have alleviated these bottlenecks in various areas of physical chemistry,4 and, hopefully this presentation will provide the reader extra insight in two selected high temperature processes that take place in flames. Two computer simulations studies will be considered. The first example is framed in Section 2, and concerns the study of the growth of silicon particles in a flame, with special emphasis on the irreversible energy accommodation that occurs in cluster-cluster collisions. The second example given in Section 3 describes the thermal degradation of simple polymers by depolymerization reactions that occurs, presumably, during the combustion of the material.


Silicon Cluster Velocity Autocorrelation Function Average Potential Energy Microscopic Reversibility Polymer Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a starting point into this literature see: “Proceedings of Faraday Symposium on Large Gas Phase Clusters”, J. Chem. Soc. Faradav Trans. 86 (1990).Google Scholar
  2. 2.
    “Elemental and Molecular Clusters”, G. Benedek, T. P. Martin, and G. Pacchioni, editors, Monographs on Material Science Vol. 6, Springier-Verlag, Berlin, Heidelberg, New York (1988).Google Scholar
  3. 3.
    E. Blaisten-Barojas, I. L. Garzon, and M. Avalos, in “Large Finite Systems”, J. Jortner, A. Pullman, and B. Pullman, editors, Ridel, Boston (1987);Google Scholar
  4. 3a.
    E. Blaisten-Barojas, I. L. Garzon, and M. Avalos, Phys. Rev. B. 40:4749 (1989).CrossRefGoogle Scholar
  5. 4.
    W. H. Marlow, in “Aerosol Microphysics I: Particle Interaction”, Springer-Verlag, Berlin, Heidelberg, New York (1980).CrossRefGoogle Scholar
  6. 5.
    M. R. Zachariah and H. G. Semerjian, AIChE. J. 35:2003 (1989).CrossRefGoogle Scholar
  7. 6.
    S. L. Chung and J. L. Katz, Combust. Flame 61:271 (1985).CrossRefGoogle Scholar
  8. 7.
    F. Gelbard, Y. Tambour, and J. H. Seinfeld, J. Colloid Inteface Sci. 76:541 (1980).CrossRefGoogle Scholar
  9. 8.
    S. H. Bauer and D. J. Frurip, J. Phys. Chem. 81:1015 (1977).CrossRefGoogle Scholar
  10. 9.
    R. A. Dobbins and G. W. Mulholland, Combust. Sci. Technol. 40:175 (1985).CrossRefGoogle Scholar
  11. 10.
    F. H. Stillinger and T. A. Weber, Phvs. Rev. B 31:5262 (1985).CrossRefGoogle Scholar
  12. 11.
    E. Blaisten-Barojas and D. Levesque, Phvs. Rev. B 34:3910 (1986).CrossRefGoogle Scholar
  13. 12.
    E. Blaisten-Barojas and M. R. Zaehariah, submitted.Google Scholar
  14. 13.
    J. G. Gray and B. J. Berne, J. Colloid Interface Sci. 109:90 (1986).CrossRefGoogle Scholar
  15. 14.
    K. Okuyama, Y. Kousaka, and K. Hayashi, J. Colloid Interface Sci. 101:98 (1984).CrossRefGoogle Scholar
  16. 15.
    I. Mita, Chap. 6, in “Aspects of Degradation and Stabilization of Polymers”, H. H. G. Jellinek, ed., Elsevier, Amsterdam, (1978).Google Scholar
  17. 16.
    M. Guaita, O. Chiantore, and L. Costa, Polv. Peg, and Stab. 12:315 (1985).Google Scholar
  18. 17.
    A. Inaba, T. Kashiwagi, and J. E. Brown, Poly. Peg, and Stab. 21:1 (1988).CrossRefGoogle Scholar
  19. 18.
    P. Rigby and R. J. Roe, J. Chem. Phys. 87:7285 (1987).CrossRefGoogle Scholar
  20. 19.
    P. W. Noid, G. A. Pfeffer, S. ZZZ. P. Cheng, and B. Wunderlich, Macromolecules 21:3482(1988).CrossRefGoogle Scholar
  21. 20.
    E. Blaisten-Barojas and M. R. Nyden, Chem. Phys. Lett. 171:499 (1990).CrossRefGoogle Scholar
  22. 21.
    B. G. F. Sumpter and P. L. Thomson, J. Chem. Phys. 88:6889 (1988).CrossRefGoogle Scholar
  23. 22.
    T. A. Weber, J. Chem. Phys. 70:4277 (1979).CrossRefGoogle Scholar
  24. 23.
    M. R. Nyden and P. W. Noid, J. Phys. Chem. 95:914 (1991).CrossRefGoogle Scholar
  25. 24.
    L. F. Shampine and M. K. Gordon, “Computer Solution of Ordinary Pifferential Equations”, W. H. Freeman, San Francisco (1975).Google Scholar
  26. 25.
    H. Zahedi and S. S. Shapiro, Commun. Statist. Theory Meth. 18:199 (1989).CrossRefGoogle Scholar
  27. 26.
    C. G. Granqvist and R. A. Buhran, J. Appl. Phys. 47:2200 (1976).CrossRefGoogle Scholar
  28. 27.
    P. J. Flory, “Principles of Polymer Chemistry”, Cornell Universitv Press, Ithaca (1957).Google Scholar
  29. 28.
    M. R. Nyden and E. Blaisten-Barojas, video-material (videocopies are available from the authors).Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • E. Blaisten-Barojas
    • 1
  1. 1.Department of ChemistryThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations