Electrochemical Contact Adsorption Site Changes Driven by Field and Charge: Fact and Theory

  • M. R. Philpott
Part of the NATO ASI Series book series (NSSB, volume 283)


When solvated anions like chloride or cyanide adsorb on metal electrodes from aqueous media they lose part of their solvation shell yielding a direct metal-ion bond. For certain anions this ‘contact’ adsorption can occur even when the electrode carries net negative charge. On the basis of classical electrochemical measurements and deductive reasoning using simple models, electrochemists have evolved a detailed ‘standard model’ of the disposition of ions, water, and organics adsorbed on the electrode in the range of potentials where the electric double layer is thermodynamically stable. There is evidence that the anions are physisorbed. However, it is only in more recent years through a variety of in situ probes of vibrational properties (ftir and raman) and geometry (sexafs and gixs) that this model is being really tested.

This paper briefly surveys what is known about contact adsorption and the electric double layer of noble metal electrodes. Some of the in situ experimental probes in current use are described. Then we describe how theory in the form of self consistent field (scf) model cluster calculations has provided some detailed insight into the nature of the adsorption bond. The interplay between experiment and theory is illustrated through discussion of a series of progressively more complex ligands. Starting with halides like chloride (Cl-), diatomics like cyanide (CN - ), small polyatomics like azide (N 3 -) and thiocyanate (SCN -) and concluding with some larger more complex ligands like sulphate (SO 4 --) and bisulphate (HSO 4 -).


Surface Enhance Raman Scattering Electric Double Layer Compact Layer Tuning Rate Noble Metal Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for example: D.C. Grahame, Chem.Rev., 41: 441,(1947).CrossRefGoogle Scholar
  2. 2.
    J.O’M. Brockris, M. A.V. Devanathan and K. Müller, Proc.Roy.Soc. (London), A274:55 (1963).Google Scholar
  3. 3.
    J.O’M. Brockris and A. Gonzalez-Martin in “Spectroscopic and Diffraction Techniques in Interfacial Electrochemistry”, C. Gutiérrez and C. Melendres Editors. NATO ASI Series C, vol.320: p 1–54. (Kluwer, Dordrecht, Holland, 1990).Google Scholar
  4. 4.
    J.R. MacDonald, J.Electroanal.Chem., 223: 1 (1987).CrossRefGoogle Scholar
  5. 5.
    P. Zelenay, L.M. Rice-Jackson and A. Wieckowski, J.Electroanal.Chem. 283:389–401(1990).CrossRefGoogle Scholar
  6. 6.
    K. Kunimatsu, W.G. Golden, H. Seki, and M.R. Philpott, Langmuir 1:245–250(1985).CrossRefGoogle Scholar
  7. 7.
    L. Blum, H. Abruna, J. White, J.G. Gordon, G. Borges, M.G. Samant, and O.R. Melroy, J.Chem. Phys.85: 6732(1986).CrossRefGoogle Scholar
  8. 8.
    O.R. Melroy, M.G. Samant, G.L. Borges, J.G. Gordon, L. Blum, J.H. White, M.J. Albarelli, M. McMillan, H.D. Abruna, Langmuir 4:728(1988).CrossRefGoogle Scholar
  9. 9.
    M.J. Bedzyk, G.M. Bommarito, M. Caffrey, and T.L. Penner, Science 248:55(1990).CrossRefGoogle Scholar
  10. 10.
    F. Anson, Accounts Chem. Res. 8:400–407(1975).CrossRefGoogle Scholar
  11. 11.
    J.O’M. Bockris and A.K.N. Reddy, “Modern Electrochemistry”, Plenum Press, New York (1973).CrossRefGoogle Scholar
  12. 12.
    W. Schmickler and D. Henderson, Prog.Surf.Sci., 22:323 (1986).CrossRefGoogle Scholar
  13. 13.
    D. Henderson in “Trends in Interfacial Electrochemistry”, A.F. Silva, Editor, (Reidel, Dordrecht, Holland, 1986), p 183.Google Scholar
  14. 14.
    C.Y. Lee, J.A. McCammon, and P.J. Rossky, J.Chem.Phys., 80:4448–4455 (1984).CrossRefGoogle Scholar
  15. 15.
    K. Raghavan, K. Foster, K. Motakabbir, and M. Berkowitz, J.Chem.Phys., 94:2110(1991).CrossRefGoogle Scholar
  16. 16.
    K. Heinzelman in “Computer Modelling of Fluids Polymers and Solids” C.R.A. Catlow, S.C. Parker and M.P. Allen, Editors. NATO ASI Series C, vol.293, p.357–404 (Kluwer, Dordrecht, 1990).Google Scholar
  17. 17.
    R.N. Barnett, U. Landman, and A. Nitzan, J.Chem.Phys., 93:6535 (1990).CrossRefGoogle Scholar
  18. 18.
    M.R. Deakin, T.T. Li and O.R. Melroy, J.Electroanal.Chem. 243:343–351(1988).CrossRefGoogle Scholar
  19. 19.
    M.F.Toney and O.M.Melroy, preprint “Surface X-ray Scattering at Electrochemical Surfaces”.Google Scholar
  20. 20.
    D.J. Trevor, C.E.D. Chidsey, and D.N. Loiacono Phys.Rev.Let. 62:929–932(1989).CrossRefGoogle Scholar
  21. 21.
    J.Porter, personal communicationGoogle Scholar
  22. 22.
    R. Chang and T. Furtak, “Surface Enhanced Raman Scattering”,Plenum Press, New York(1982).CrossRefGoogle Scholar
  23. 23.
    P. Gao and M.J. Weaver, J.Phy.Chem.,90:4057–4063 (1986).CrossRefGoogle Scholar
  24. 24.
    K. Ashley, Spectroscopy, 5:22–32(1990).Google Scholar
  25. 25.
    Y.R. Shen, “Principles of Nonlinear Optics”, Wiley,New York (1984).Google Scholar
  26. 26.
    Y.R. Shen, Nature,337:189 (1989).CrossRefGoogle Scholar
  27. 27.
    K. Ashley, M.G. Samant, H. Seki and M.R. Philpott, J.Electroanal.Chem., 270:349–364(1989).CrossRefGoogle Scholar
  28. 28.
    A.Tadjeddine and P.Guyot-Sionest, preprint, “Spectroscopy Investigation of Adsorbed Cyanide and Thiocyanate on Platinum using Sum Frequency Generation”.Google Scholar
  29. 29.
    R.M. Corn, M. Romagnoli, M.D. Levenson, and M.R. Philpott Chem.Phys.Lett.,106:30–35 (1984).CrossRefGoogle Scholar
  30. 30.
    P. Guyot-Sionnest, A. Tadjeddine and A. Liebsch, Phys. Rev. Lett. 64:1678–1681(1990).CrossRefGoogle Scholar
  31. 31.
    J.L. Stickney, D.A. Stern, B.C. Schardt, D.C. Zapien, A. Wieckowski, and A.T. Hubbard, J.Electroanal.Chem.,213:293(1986)CrossRefGoogle Scholar
  32. 32.
    F.T. Wagner and P.N. Ross, J.Electroanal.Chem.,150: 141(1983).CrossRefGoogle Scholar
  33. 33.
    D.M. Kolb,Ber.Bunsenges.Phys.Chem.,92: 1175–1187(1988).Google Scholar
  34. 34.
    C.B. Ehlers and J.L. Stickney, Surf. Sci. 239, 85–102(1990).CrossRefGoogle Scholar
  35. 35.
    N.D. Lang and A.R. Williams, Phys.Rev.Lett.,34:531–534 (1975).CrossRefGoogle Scholar
  36. 36.
    F.Herman, J.Sticht and M.Van Schilgaarde, preprint, “Spin-Polarized Band Structure of Magnetically Coupled Multilayers”.Google Scholar
  37. 37.
    R. Hoffmann, “Solids and Surfaces”, VCH Publishers, New York (1988).Google Scholar
  38. 38.
    G. Benedek, T.P. Martin, and G. Pacchioni,editors, “Elemental and Molecular Clusters”, Springer-Verlag, Berlin (1988).Google Scholar
  39. 39.
    M.J. Weaver, J.T. Hupp, F. Barz, J.G. Gordon, and M.R. Philpott, J.Electroanal.Chem., 160:321–333(1984).CrossRefGoogle Scholar
  40. 40.
    P.S. Bagus, G. Pacchioni and M.R. Philpott, J.Chem.Phys., 90:4287–4295(1989).CrossRefGoogle Scholar
  41. 41.
    J.G.Gordon, personal communication.Google Scholar
  42. 42.
    K. Kunimatsu, H. Seki, W.G. Golden, J.G. Gordon, and M.R. Philpott, Surf.Sci., 158:596–608 (1985).CrossRefGoogle Scholar
  43. 43.
    K. Kunimatsu, H. Seki, W.G. Golden, J.G. Gordon and M.R. Philpott, Langmuir,4:377–341(1988).CrossRefGoogle Scholar
  44. 44.
    P.S. Bagus, C.J. Nelin, W. Mueller, M.R. Philpott and H. Seki, Phys.Rev.Lett.,58:559–562 (1987).CrossRefGoogle Scholar
  45. 45.
    P.S. Bagus, C.J. Nelin, K. Herman, and M.R. Philpott, Phys.Rev.Rapid Comm.,36:8169–8172(1987).Google Scholar
  46. 46.
    D.S. Corrigan, E.S. Brandt and M.J. Weaver, J.Electroanal.Chem., 235:327–341(1987).CrossRefGoogle Scholar
  47. 47.
    R.E. Kunz, J.G. Gordon, M.R. Philpott, and A. Girlando, J.Electroanal.Chem., 112:391–395(1980).CrossRefGoogle Scholar
  48. 48.
    M. Samant, R. Viswanathan, H. Seki, P.S. Bagus, C.J. Nelin and M.R. Philpott, J.Chem.Phys.,89:583–589(1988).CrossRefGoogle Scholar
  49. 49.
    M.J. Weaver, F. Barz, J.G. Gordon, and M.R. Philpott, Surf.Sci., 125:409 (1983).CrossRefGoogle Scholar
  50. 50.
    M.G.Samant, K.Kunimatsu, R.Viswanathan, H.Seki, G.Pacchioni, P.S.Bagus, and M.R.Philpott, preprint, “In situ FTIR Study of Contact Adsorbed Thiocyanate on Silver Electrodes. Theory and Experiment/Google Scholar
  51. 51.
    K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination Compounds”, Wiley, New York (1978). Third edition.Google Scholar
  52. 52.
    G.Pacchioni, F.Illas, M.R.Philpott, and P.S.Bagus, preprint, “Bonding Geometry and Bonding Character of Thiocyanate Adsorbed on Ag(100) Surface”.Google Scholar
  53. 53.
    L.A.Barnes, B.Liu, and M.R.Philpott, unpublished calculations.Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • M. R. Philpott
    • 1
  1. 1.Theory and Computational Physics, IBM Research DivisionAlmaden Research CenterSan JoseUSA

Personalised recommendations