Adsorption Sites on Pd (110): Bridge and On- Top CO

  • G. Blyholder
  • H. Sellers
Part of the NATO ASI Series book series (NSSB, volume 283)


The adsorption of CO has received much attention because CO is a participant in important industrial process such as the Fischer-Tropsch synthesis and because it has proven to be relatively easy to examine experimentally. Adsorption of CO on Pd is of particular interest because of the use of noble metals, including Pd, in automobile exhaust catalysts to reduce pollution emissions. An understanding of catalytic reactions on metal surfaces requires a knowledge of the surface sites, their geometries and differing energies of interaction with adsorbates. Here our interest is in delineating these factors which cause one site to adsorb CO more tightly than another.


Chem Phys Bridge Site Reduce Pollution Emission Important Industrial Process Automobile Exhaust Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Raval, G. Blyholder, S. Haq and D.A. King, J. Phys: Condens. Matter 1, SB165 (1989).CrossRefGoogle Scholar
  2. 2.
    P.A. Thiel, W.H. Weinberg and J.T. Yates, J. Chem Phys. 71, 1643 (1979).CrossRefGoogle Scholar
  3. 3.
    R.P. Eischens and W. A. Pliskin, Advan. Catal. Relat. Sub. 10, 1 (1958).Google Scholar
  4. 4.
    R. Raval, M.A. Harrison and D.A. King, Sur. Sci. 211/212. 61 (1989).CrossRefGoogle Scholar
  5. 5.
    R. Raval, S. Haq, M.A. Harrison, G. Blyholder and D.A. King, Chem. Phys. Lett. 167, 391 (1990).CrossRefGoogle Scholar
  6. 6.
    M.A. Chesters, G.S. McDougall, M.E. Pemble and N. Sheppard, Surface Science, 164, 425 (1985).CrossRefGoogle Scholar
  7. 7.
    G. Ertl, M. Neumann and K.M. Streit, Surface Science, 64 393 (1977)CrossRefGoogle Scholar
  8. 8.
    P. Uvdal, P.A. Karlsson, C. Nyberg, S. Anderson, N.V. Richardson, Sur. Sci. 202, 167 (1988)CrossRefGoogle Scholar
  9. 9.
    R.J. Behm, K. Christmann, G. Ertl, M.A. Van Hove, J. Chem. Phys. 71, 2984 (1980).CrossRefGoogle Scholar
  10. 10.
    H. Conrad, G. Ertl, J. Koch, and E.E. Latta, Surface Science, 43, 462 (1974).CrossRefGoogle Scholar
  11. 11.
    G. Ertl and P. Rau, Surface Science, 15, 443 (1969).CrossRefGoogle Scholar
  12. 12.
    G. Blyholder, J. Phys. Chem. 68, 2772 (1964).CrossRefGoogle Scholar
  13. 13.
    G. Blyholder and M.C. Allen, J. Am. Chem. Soc. 91, 3158 (1969).CrossRefGoogle Scholar
  14. 14.
    G. Blyholder, J. Vac. Sci. and Technology, 11, 865 (1974)CrossRefGoogle Scholar
  15. 15.
    A. Rosen, P. Grundevik, and T. Morovic, Surf. Sci. 95, 477 (1980).CrossRefGoogle Scholar
  16. 16.
    J. Andzelm and D.R. Salahub, Int. J. Quant. Chem. 29, 1091 (1986).CrossRefGoogle Scholar
  17. 17.
    A. Gavezzotti, G.F. Tantardini, and M. Simonetta, Chem. Phys. 105. 333 (1986).CrossRefGoogle Scholar
  18. 18.
    M.R.A. Blomberg, C.B. Lebrilla, and P.E.M. Siegbahn, Chem. Phys. Lett. 150, 522 (1988).CrossRefGoogle Scholar
  19. 19.
    G. Pacchioni and J. Koutecky, J. Phys. Chem. 91 2658 (1987).CrossRefGoogle Scholar
  20. 20.
    G. Pacchioni and P.S. Bagus, J. Chem. Phys. 93, 1209 (1990).CrossRefGoogle Scholar
  21. 21.
    G.W. Smith and E.A. Carter, J. Phys. Chem. 95, 2327 (1991).CrossRefGoogle Scholar
  22. 22.
    P.S. Bagus and G. Pacchioni, Sur. Sci. 236, 233 (1990).CrossRefGoogle Scholar
  23. 23.
    S. Huzinaga, M. Klubokowski, Y.J. Sakai, Phys. Chem. 88, 4880 (1984);CrossRefGoogle Scholar
  24. 23a.
    J. Andzelm, S. Huzinaga, M. Klubokowski, E. Radzio, Mol. Phys. 52, 1495 (1984);CrossRefGoogle Scholar
  25. 23b.
    S. Huzinaga, L. Scijo, Z. Barandiaran, M. Klubowski, J. Chem. Phys. 86, 2132 (1987);CrossRefGoogle Scholar
  26. 23c.
    V. Bonifacio, S. Huzinaga, J. Chem Phys. 60 2779 (1974).CrossRefGoogle Scholar
  27. 24.
    H. L. Sellers, Chem Phys. Lett. accepted, in press.Google Scholar
  28. 25.
    J. Almlof, K. Faegri Jr., H.H. Grelland, Chem Phys. Lett. 114, 53, (1986)CrossRefGoogle Scholar
  29. 26.
    H.L. Sellers, Chem Phys. Lett. 170, 5 (1990).CrossRefGoogle Scholar
  30. 27.
    E.D. Simandiras, J.E. Rice, T.J. Lee, R.D. Amos, N.C. Handy, J. Chem Phys. 88, 3187 (1988).CrossRefGoogle Scholar
  31. 28.
    H.L. Sellers, J. Phys. Chem. 94, 8329 (1990).CrossRefGoogle Scholar
  32. 29.
    I. Hyla-Krispin, J. Demuynck, A. Strich, M. Bernard, J. Chem. Phys. 25, 3954 (1981).CrossRefGoogle Scholar
  33. 30.
    H.L. Sellers, Chem Phys. Lett, accepted, in press.Google Scholar
  34. 31.
    J. Almlof, K. Faegri Jr., M. Feyereisen, K. Korsell, DISCO is a direct SCF and MBPT2 computer program. The NCSA version has been extensively modified for these metal cluster systems.Google Scholar
  35. 32.
    Y. Wong and R. Hoffmann, J. Phys. Chem. 95, 859 (1991).CrossRefGoogle Scholar
  36. 33.
    O.K. Anderson, Phys. Rev. B 2, 883 (1970).CrossRefGoogle Scholar
  37. 34.
    J.A. Pople, D.L. Beveridge, “Approximate Molecular Orbital Theory”, McGraw-Hill, New York (1970).Google Scholar
  38. 35.
    G. Blyholder and M. Lawless, Prog. in Surface Sci. 26, 181 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • G. Blyholder
    • 1
  • H. Sellers
    • 2
  1. 1.Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleUSA
  2. 2.National Center for Supercomputing ApplicationsUniversity of IllinoisUrbanaUSA

Personalised recommendations