The Use of the Cluster Model for the Calculation of Chemisorption Energetics

  • P. E. M. Siegbahn
  • M. A. Nygren
  • U. Wahlgren
Part of the NATO ASI Series book series (NSSB, volume 283)


Cluster size convergency of chemisorption energies is discussed with particular emphasis on recent results for adsorbates other than the hydrogen atom. For the hydrogen atom bond-preparing the cluster with one singly occupied orbital of the same symmetry as the hydrogen 1s orbital leads to a rather quick convergence of the chemisorption energy. Bond-preparation can in this case be simply interpreted in terms of the formation of a covalent bond between two radicals. The results obtained for adsorbates like fluorine and oxygen suggest a different interpretation of bond-preparation. A picture where the adsorbate electrons should fit into the electronic structure of the cluster is more general and can be applied for all these adsorbates. Finally, some preliminary results for CO chemisorption on small copper clusters are discussed and compared to recent cluster experiments. It appears that cluster size convergency in this case is faster if the cluster geometry is optimized than if the cluster geometry is fixed to model a particular surface.


Cluster Size Lone Pair Bonding Mechanism Occupied Orbital Copper Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

V. References

  1. 1.
    T.H. Upton and W.A. Goddard, Chemisorption of H, Cl, Na,O and S on Ni(100) Surfaces: A Theoretical Study Using Ni20 Clusters, CRC Critical Reviews in Solid State and Materials Sciences (CRC Press, Boca Raton, 1981);Google Scholar
  2. 1a.
    C.F. Melius, T.H. Upton and W.A. Goddard, Electron Properties of Metal Clusters (Ni13 to Ni87) and Implications for Chemisorption, Solid State Commun. 28 (1978) 501;CrossRefGoogle Scholar
  3. 1b.
    T.H. Upton and W.A. Goddard, Chemisorption of Atomic Hydrogen on Large-Nickel-Cluster Surfaces, Phys. Rev. Letters 42 (1979) 472.CrossRefGoogle Scholar
  4. 2.
    C.W. Bauschlicher,Jr, P.S. Bagus and H.F. Schaefer III, Model study in chemisorption: Molecular Orbital Cluster Theory for Atomic Hydrogen on Be(0001), IBM J. Res. Dev. 22 (1978) 213.CrossRefGoogle Scholar
  5. 3.
    P.S. Bagus, K. Hermann and C.W. Bauschlicher, Jr, On the Nature of the Bonding of Lone Pair Ligands to a Transition Metal, J. Chem. Phys. 81 (1984) 1966.CrossRefGoogle Scholar
  6. 4.
    K. Hermann, P.S. Bagus and C.W. Bauschlicher, Jr, Enhancement of the Dynamical Dipole Moment in Adsorbed Molecules: Theoretical Studies for CO/Cu(100), Phys. Rev. B30 (1984) 7313.Google Scholar
  7. 5.
    K. Hermann, P.S. Bagus and C.J. Nelin, Size Dependence of Surface Cluster models: CO Adsorbed on Cu(100) Phys. Rev. B35 (1987) 9467.Google Scholar
  8. 6.
    I. Panas, J. Schüle, P. Siegbahn and U. Wahlgren, On the Cluster Convergence of Chemisorption Energies, Chem. Phys. Letters 149 (1988) 265.CrossRefGoogle Scholar
  9. 7.
    J. Schüle, P. Siegbahn and U. Wahlgren, A Theoretical Study of Methyl Chemisorption on Ni(111), J. Chem. Phys. 89 (1988) 6982.CrossRefGoogle Scholar
  10. 8.
    R.E. Leuchtner, A.C. Harms and A.W Castleman, Jr, Metal Cluster Cation Reactions: Carbon Monoxide Association to Cun+ Ions, J. Chem. Phys. 92 (1990) 6527.CrossRefGoogle Scholar
  11. 9.
    J.C. Tracy, Structural Influence on Adsorption Energy III. CO on Cu(100), J. Chem. Phys. 56 (1972) 2748;CrossRefGoogle Scholar
  12. 9a.
    C.F. McConville, D.P. Woodruff, N.C. Prince, G. Paolucci, V. Chab, M. Surman and A.M. Bradshaw, An X-ray Adsorption and Photoelectron Diffraction Study of the Cu(100) c(2 × 2) CO Structure, Surf. Sci. 166 (1986) 221.CrossRefGoogle Scholar
  13. 10.
    I. Panas, P. Siegbahn and U. Wahlgren, Model Studies of the Chemisorption of Hydrogen and Oxygen on Nickel Surfaces. I. The Design of a One Electron Effective Core Potential Which Includes 3d Relaxation Effects, Chem. Phys. 112 (1987) 325.CrossRefGoogle Scholar
  14. 11.
    I. Panas, P. Siegbahn and U. Wahlgren, Model Studies of the Chemisorption of Hydrogen and Oxygen on Nickel Surfaces. II. Atomic Chemisorption on Ni(100), Theoret. Chim. Acta 74 (1988) 167.CrossRefGoogle Scholar
  15. 12.
    T.H. Dunning, Gaussian Basis Functions for use in Molecular Calculations. I. Contraction of (9s,5p) Atomic Basis Sets for the First Row Atoms, J. Chem. Phys. 53 (1970) 2823.CrossRefGoogle Scholar
  16. 13.
    S. Huzinaga, Gaussian Type Functions for Polyatomic Systems, J. Chem. Phys. 42 (1965) 1293.CrossRefGoogle Scholar
  17. 14.
    A.J.H. Wachters, Gaussian Basis sets for Molecular Wavefunctions Containing Third Row Atoms, J. Chem. Phys. 52, (1970) 1033.CrossRefGoogle Scholar
  18. 15.
    A. Mattsson, I. Panas, P. Siegbahn, U. Wahlgren and H. Åkeby, Model Studies of the Chemisorption of Hydrogen and Oxygen on Cu(100), Phys. Rev. B36 (1987) 7389.Google Scholar
  19. 16.
    D.P. Chong and S.R. Langhoff, A Modified Coupled Pair Functional Approach, J. Chem. Phys. 84 (1986) 5606.CrossRefGoogle Scholar
  20. 17.
    W. Müller, J. Flesch and W. Meyer, Treatment of Intershell Correlation Effects in Ab Initio Calculations by use of Core Polarization Potentials. Method and Application to Alkali and Alkaline Earth Metal Atoms. J. Chem. Phys. 80 (1984) 3297.CrossRefGoogle Scholar
  21. 18.
    L.G.M. Pettersson and H. Åkeby, Core-valence Correlation Effects using Approximate Operators, J. Chem. Phys. 94 (1991) 2968.CrossRefGoogle Scholar
  22. 19.
    L.G.M. Pettersson, H. Åkeby, P.E.M. Siegbahn and U. Wahlgren, The Effects of Core(3d) Correlation on Chemisorption, J. Chem. Phys. 93 (1990) 4954.CrossRefGoogle Scholar
  23. 20.
    G. Ertl, ch. 5. in The Nature of the Surface Chemical Bond, edited by T.N. Rhodin and G. Ertl (North-Holland, Amsterdam, 1979).Google Scholar
  24. 21.
    L.G.M. Pettersson and P.S. Bagus, Adsorbate Ionicity and Surface Dipole Moment Changes; Cluster Model Studies of Cl/Cu(100) and F/Cu(100), Phys. Rev. Letters 56 (1986) 500.CrossRefGoogle Scholar
  25. 22.
    I. Panas and P.E.M. Siegbahn, The Nature of the Surface Chemical Bond — a Comparison Between the Molecular and Solid State Pictures, J. Chem. Phys. 92 (1990) 4625.CrossRefGoogle Scholar
  26. 23.
    P.E.M. Siegbahn, L.G.M. Pettersson and U. Wahlgren, Theoretical Study of Atomic Fluorine Chemisorption on the Ni(100), J. Chem. Phys. 94 (1991) 4024.CrossRefGoogle Scholar
  27. 24.
    W.F. Egelhoff, Jr., Core-level Binding-Energy-Shift Analysis of Adsorption and Dissociation, Phys. Rev. B29 (1984) 3681.Google Scholar
  28. 25.
    D. Brennan, D.O. Hayward and B.M.W. Trapnel, The Calorimetric Determination of the Heats of Adsorption of Oxygen on Evaporated Films, Proc. Roy. Soc. A256 (1960) 81.Google Scholar
  29. 26.
    E. Shustorovich, Chemisorption Phenomena: Analytical Modeling Based on Perturbation Theory and Bond-Order Conservation, Surf. Sci. Rep. 6 (1986) 1;CrossRefGoogle Scholar
  30. 26a.
    E. Shustorovich, The Bond Order Conservation Approach to Chemisorption and Heterogenous Catalysis: Applications and Implications, Adv. Catalys. 37 (1989) 1.Google Scholar
  31. 27.
    P.E.M. Siegbahn and U. Wahlgren, A Theoretical Study of Atomic Oxygen Chemisorption on the Ni(100) and Ni(111) Surfaces, Intern. J. Quantum Chem. in press.Google Scholar
  32. 28.
    M.H. McAdon and W.A. Goddard, III, New Concepts of Metallic Bonding Based on Valence-Bond Ideas, Phys. Rev. Letters 55 (1985) 2563.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • P. E. M. Siegbahn
    • 1
  • M. A. Nygren
    • 1
  • U. Wahlgren
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of StockholmStockholmSweden

Personalised recommendations