Chemisorption on Metal Surfaces: Cluster Model Investigations Based on the LCGTO-LDF Method

  • N. Rösch
Part of the NATO ASI Series book series (NSSB, volume 283)


The interaction of atoms and molecules with metal surfaces forms a fascinating subject of great fundamental and technological interest. Corrosion and heterogeneous catalysis may serve as examples to illustrate important application areas where a basic understanding of chemisorption phenomena is helpful. The charm and the challenge of this field is intimately connected to the fact that both molecular (or atomic) and solid state aspects have to be dealt with. Since surface science is now well established,1 it is no wonder that a large variety of theoretical concepts and tools are presently used to order and to describe the many observations. Many theoretical methods have been borrowed from the two ancestral disciplines, molecular chemistry and solid state physics. In such a situation it is of advantage when a method is used in both areas since one may hope, at least in principle, to find a unifying description that applies to both the molecular and the solid state limit equally well.


Vibrational Frequency Point Charge Mulliken Charge Alkali Atom Alkali Metal Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Zangwill, “Physics at Surfaces”, Cambridge University Press, Cambridge (1988).Google Scholar
  2. 2.
    R.M. Dreizler and E.K.W. Gross, “Density Functional Theory”, Springer, Berlin (1990).Google Scholar
  3. 3.
    A.R. Willams and U. von Barth, in “Theory of the Inhomogeneous Electron Gas”, S. Lundqvist and N.H. March, eds., Plenum, New York (1983), p. 189.Google Scholar
  4. 4.
    N.D. Lang, in: “Theory of the Inhomogeneous Electron Gas”, S. Lundqvist and N.H. March, eds., Plenum, New York (1983), p. 309.Google Scholar
  5. 5.
    E. Wimmer, C.L. Fu and A.J. Freeman, Phys. Rev. Lett., 55:2618 (1985).CrossRefGoogle Scholar
  6. 6.
    U. Birkenheuer, N. Rösch, S.B. Trickey and J. Noffke, Z. Phys., B83:267 (1991).CrossRefGoogle Scholar
  7. 7.
    J.K. Labanowski and J.W. Andzelm, eds., “Density Functional Methods in Chemistry”, Springer, New York (1991).Google Scholar
  8. 8.
    B.I. Dunlap, J.W.D. Connolly and J.R. Sabin, J. Chem. Phys., 71:3396 (1979).CrossRefGoogle Scholar
  9. 9.
    R.P. Messmer, in: “The Nature of the Surface Chemical Bond”, T.N. Rhodin and G. Ertl, eds., North—Holland, Amsterdam (1979), p. 51.Google Scholar
  10. 10.
    J.L. Whitten, this volume.Google Scholar
  11. 11.
    C. Pisani, R. Orlando and R. Nada, this volume.Google Scholar
  12. 12.
    P.E.M. Siegbahn, M.A. Nygren and U. Wahlgren, this volume.Google Scholar
  13. 13.
    N. Rösch, P. Knappe, P. Sandl and A. Görling, Int. J. Quantum Chem., S22:275 (1988).CrossRefGoogle Scholar
  14. 14.
    N. Rösch, P. Knappe, P. Sandl, A. Görling and B.I. Dunlap, in: “The Challenge of d and f Electrons. Theory and Computation”, D.R. Salahub and M.C. Zerner, eds., American Chemical Society, Symposium Series no. 394, Washington (1989), p. 180.CrossRefGoogle Scholar
  15. 15.
    B.I. Dunlap and N. Rösch, J. Chim. Phys. Physico-Chim. Biol., 86:671 (1989).Google Scholar
  16. 16.
    B.I. Dunlap and N. Rösch, Adv. Quantum Chem., 21:317 (1990).CrossRefGoogle Scholar
  17. 17.
    H. Jörg, N. Rösch, J.R. Sabin and B.I. Dunlap, Chem. Phys. Lett., 114:529 (1985).CrossRefGoogle Scholar
  18. 18.
    A.H.J. Wächters, J. Chem. Phys., 52:1033 (1970).CrossRefGoogle Scholar
  19. 19.
    A. Veillard, Theor. Chim. Acta, 12:405 (1968).CrossRefGoogle Scholar
  20. 20.
    F.B. van Duijneveldt, IBM Research Report RJ 945 (1971).Google Scholar
  21. 21.
    D.S. Villars and I. Langmuir, J. Am. Chem. Soc. 53:486 (1931).CrossRefGoogle Scholar
  22. 22.
    D.M. Riffe, G.K. Wertheim and P.H. Citrin, Phys. Rev. Lett. 64:571 (1990).CrossRefGoogle Scholar
  23. 23.
    H. Ishida and K. Terekura, Phys. Rev., B38:5752 (1988).Google Scholar
  24. 24.
    P.S. Bagus and G. Pacchioni, this volume.Google Scholar
  25. 25.
    H.P. Bonzel, A.M. Bradshaw and G. Ertl, eds., “Physics and Chemistry of Alkali Metal Adsorption”, Elsevier, Amsterdam (1989).Google Scholar
  26. 26.
    H.P. Bonzel, Surface Sci. Rep. 8:43 (1987).CrossRefGoogle Scholar
  27. 27.
    G. Ertl, in ref. 25, p. 1.Google Scholar
  28. 28.
    J. Hölzl and L. Fritsche, Surf. Sci., 247:226 (1991).CrossRefGoogle Scholar
  29. 29.
    J.P. Muscat and LP. Batra, Phys. Rev., B34:2889 (1986).Google Scholar
  30. 30.
    R.W. Gurney, Phys. Rev. 47:2798 (1935).CrossRefGoogle Scholar
  31. 31.
    H. Ishida, Phys. Rev., B38:8006 (1988).Google Scholar
  32. 32.
    J.E. Demuth, D.W. Jepsen and P.M. Marcus, J. Phys., C8:L25 (1975).Google Scholar
  33. 33.
    R.L. Gerlach and T.N. Rhodin, Surf. Sci., 19:403 (1969).CrossRefGoogle Scholar
  34. 34.
    A.D. Becke, J. Chem. Phys., 84:4524 (1986).CrossRefGoogle Scholar
  35. 35.
    D. Post and E.J. Baerends, J. Chem. Phys., 87:4663 (1983).Google Scholar
  36. 36.
    R.D. Shannon, Acta Cryst., A32:751 (1976).Google Scholar
  37. 37.
    T.H. Upton and W.A. Goddard, Crit. Rev. Solid State Mater. Sci., 10:261 (1981).CrossRefGoogle Scholar
  38. 38.
    K.P. Huber and G. Herzberg, “Constants of Diatomic Molecules”, Van Nostrand Reinhold, Princeton (1979).Google Scholar
  39. 39.
    M. Scheffler, Ch. Droste, A. Fleszar, F. Mâca, G. Wachutka and G. Barzel, to be published.Google Scholar
  40. 40.
    V.L. Moruzzi, J.F. Janak and A.R. Williams, “Calculated Properties of Metals”, Pergamon, New York (1978).Google Scholar
  41. 41.
    J.C. Bertolini and B. Tardy, Surf. Sci., 102:161 (1981).CrossRefGoogle Scholar
  42. 42.
    M.A. Passler, A. Ignatiev, F. Jona, D.W. Jepsen and P.M. Marcus, Phys. Rev. Lett. 43:363 (1979).CrossRefGoogle Scholar
  43. 43.
    L. Surnev, Z. Xu and J.T. Yates, Surf. Sci. 201:14 (1988).CrossRefGoogle Scholar
  44. 44.
    D.F. Ogletree, M.A. van Hove and G. Somorjai, Surf. Sci., 173:351 (1986).CrossRefGoogle Scholar
  45. 45.
    G. Blyholder, J. Phys. Chem., 68:2722 (1964).CrossRefGoogle Scholar
  46. 46.
    P.S. Bagus, C.J. Nelin and C.W. Bauschlicher Jr., Phys. Rev., B28:5433 (1983).Google Scholar
  47. 47.
    S. Sung and R. Hofmann, J. Am. Chem. Soc, 107:578 (1985).CrossRefGoogle Scholar
  48. 48.
    D. Heskett, Surf. Sci., 199:67 (1988).CrossRefGoogle Scholar
  49. 49.
    K. J. Uram, L. Ng, and J.T. Yates, Surf. Sci., 177:253 (1986).CrossRefGoogle Scholar
  50. 50.
    P.A. Schultz, C.H. Patterson and R.P. Messmer, J. Vac. Sci., A5:1061 (1987).CrossRefGoogle Scholar
  51. 51.
    P.S. Bagus, C.J. Nelin, W. Müller, M.R. Philpott and H. Seki, Phys. Rev. Lett., 58:559 (1987).CrossRefGoogle Scholar
  52. 52.
    G. Pacchioni and P.S. Bagus, Phys. Rev., B40:6003 (1989).Google Scholar
  53. 53.
    P.S Bagus and G. Pacchioni, Surf. Sci., 236:233 (1990).CrossRefGoogle Scholar
  54. 54.
    J.E. Mueller, Appl. Phys., A49:681 (1989).Google Scholar
  55. 55.
    N. Rösch, A. Görling, P. Knappe and J. Lauber, Vacuum, 41:150 (1990).Google Scholar
  56. 56.
    C. Schneider, H.—P. Steinrück, T. Pache, P. Heimann, D.J. Coulman, E. Umbach and D. Menzel, Vacuum, 41:730 (1990).CrossRefGoogle Scholar
  57. 57.
    P.S. Bagus, C.J. Nelin, K. Hermann and M.R. Philpott, Phys. Rev., B36:8169 (1987).Google Scholar
  58. 58.
    F.M. Hoffmann, Surf. Sci. Rept., 3:107 (1983).CrossRefGoogle Scholar
  59. 59.
    Ph. Avouris and J. Demuth, Ann. Rev. Phys. Chem., 35:49 (1984).CrossRefGoogle Scholar
  60. 60.
    L. Ng, H.J. Uram, Z. Xu, P.L. Jones and J.T. Yates Jr., J. Chem. Phys., 86:6523 (1987).CrossRefGoogle Scholar
  61. 61.
    D.A. Wesner, G. Pirug, F.G. Coenen and H.P. Bonzel, Surf. Sci., 178:608 (1986).CrossRefGoogle Scholar
  62. 62.
    E. Bertel, L. Ackermann and N. Rösch, to be published.Google Scholar
  63. 63.
    H. Kuhlenbeck, M. Neumann and H.-J. Freund, Surf. Sci., 173:194 (1986).CrossRefGoogle Scholar
  64. 64.
    D.J. Hannaman and M.A. Passler, Surf. Sci., 203:449 (1988).CrossRefGoogle Scholar
  65. 65.
    B. Voigtländer, D. Bruchmann, S. Lehwald and H. Ibach, Surf. Sci., 225:151 (1990).CrossRefGoogle Scholar
  66. 66.
    N. Memmel, G. Rangelov, E. Bertel, V. Dose, K. Kometer and N. Rösch, Phys. Rev. Lett., 63:1884 (1989).CrossRefGoogle Scholar
  67. 67.
    Th. Fox and N. Rösch, Surf. Sci., (1991) in print.Google Scholar
  68. 68.
    S. Kulkarni, J. Somers, A.W. Robinson, D. Ricken, Th. Lindner, P. Hollins, D.J. Lapeyre and A.M. Bradshaw, to be published.Google Scholar
  69. 69.
    G. Kleinle, M. Skottke, V. Penka, G. Ertl, R.J. Behm and W. Moritz, Surf. Sci. 189/190:177 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • N. Rösch
    • 1
  1. 1.Lehrstuhl für Theoretische ChemieTechnische Universität MünchenGarchingGermany

Personalised recommendations