Advertisement

Theory of Core-Level Shifts of Clean and Covered Surfaces

  • O. Bisi
  • S. Ossicini
  • C. Arcangeli
Part of the NATO ASI Series book series (NSSB, volume 283)

Abstract

The core-level binding energy of an atom in the surface region is different from that of the bulk atoms1,2. From the measurement of this core-level shift many informations on the electronic states and surface properties can be devised. The interpretation of the surface core-level shift in terms of the one-electron picture is not a simple task, because the core-level binding energy (BE) is correctly viewed as an energy difference between the ground state and a core-hole final state of the system. This total energy difference, that determines the core-level BE, is not simply related to the single-particle eigenvalues, due to relaxation and correlation effects. For this reason single-particle eigenvalues are only a gross approximation to core-level BE. On the contrary the core-level BE shift, on going from the surface to the bulk environment, can be successfully related to the single-particle eigenvalue shift. We will show this for various surface systems: (i) a clean surface of a metal, Ni; (ii) an interface between a metallic monolayer and a semiconductor, Na-Si(111); (iii) a semiconductor- insulator interface, F-Ca-Si(111).

Keywords

Core Level Vacuum Region Empty Sphere Binding Energy Shift Atomic Sphere Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. F. Egelhoff, Core level binding energies shifts at surfaces and in solids, Surf. Sci. Rep. 6:253 (1987).CrossRefGoogle Scholar
  2. 2.
    F. J. Himpsel, B. S. Meyerson, F. R. McFeely, J. F. Morar, A. Taleb-Ibrahimi and J. A. Yarmoff, Core level spectroscopy at silicon surfaces and interfaces, in: “Photoemission and Absorption Spectroscopy of Solids and Interfaces with Synchrotron Radiation”, M. Campagna and R. Rosei ed., North-Holland, Amsterdam, 1990.Google Scholar
  3. 3.
    S. Ossicini and O. Bisi, Self consistent LMTO calculation for semiconductor clean surfaces, Surf. Sci. 211/212:572 (1989).CrossRefGoogle Scholar
  4. 4.
    O. Bisi and S. Ossicini, Electronic and magnetic properties of interfaces, in: “Photoemission and Absorption Spectroscopy of Solids and Interfaces with Synchrotron Radiation”, M. Campagna and R. Rosei ed., North-Holland, Amsterdam, 1990.Google Scholar
  5. 5.
    S. Ossicini, C. Arcangeli and O. Bisi, Covalency in the adsorption of Na on Si(111), Phys. Rev. B, 42:7671 (1990).CrossRefGoogle Scholar
  6. 6.
    S. Ossicini, C. Arcangeli and O. Bisi, Chemical bond and electronic states at the CaF2-Si(111) and Ca-Si(111) interfaces, Phys. Rev. B. 43 in press (1991).Google Scholar
  7. 7.
    O. K. Andersen, Linear methods in band theory, Phys. Rev. B, 12:3060 (1975).CrossRefGoogle Scholar
  8. 8.
    J. Keller, Modified muffin tin potentials for the band structure of semiconductors, J. Phys. C, 4:L85 (1971).CrossRefGoogle Scholar
  9. 9.
    D. Glötzel, B.Segall and O.K.Andersen, Self-consistent electronic structure of Si, Ge and diamond by the LMTO-ASA method, Solid St. Commun., 36:403 (1980).CrossRefGoogle Scholar
  10. 10.
    A. K. McMahan, Interstitial-sphere linear muffin-tin orbital structural calculations for C and Si, Phys. Rev. B, 10:5835 (1984).CrossRefGoogle Scholar
  11. 11.
    A. Franceschetti and O. Bisi, to be published.Google Scholar
  12. 12.
    W. R. L. Lambrecht, Analysis of core-level shifts in some metallic Ni compounds, Phys. Rev. B. 34:7421 (1986).CrossRefGoogle Scholar
  13. 13.
    A. M. Begley, R. G. Jordan, W. M. Temmerman and P. J. Durham, Calculations of surface core-level shifts for the lanthanides, Phys. Rev. B, 41:11780 (1990).CrossRefGoogle Scholar
  14. 14.
    A. J. Freeman, C. L. Fu. S. Ohnishi, and M. Weinert, Electronic and magnetic structure of solid surfaces, in: “Polarized Electrons in Surface Physics”, R. Feder ed., World Scientific, Singapore (1985).Google Scholar
  15. 15.
    F. J. Arlinghaus, J. G. Gay, and J. R. Smith, Surface states on d-band metals, Phys. Rev. 123:5152(1981).Google Scholar
  16. 16.
    E. Wimmer, A. J. Freeman and H. Krakauer, Magnetism at Ni(00l) surface:a high precision, all-electron local-spin-density-functional study, Phys. Rev. B 30:3113 (1984).CrossRefGoogle Scholar
  17. 17.
    W. F. Egelhoff Jr., X-ray photoelectron and Auger-electron forward scattering: a new tool for studyng epitaxial growth and core-level binding energy shifts, Phys. Rev. B 30:1052 (1984).CrossRefGoogle Scholar
  18. 18.
    H. Krakauer, A. J. Freeman, and E. Wimmer, Magnetism of the Ni(110) and Ni(100) surfaces: local-spin-density-functional calculations using the thin-slab linearized-augmented-plane wave method, Phys. Rev. B 28:610 (1983).CrossRefGoogle Scholar
  19. 19.
    F. Jona, LEED crystallography, J. Phys. C: Solid St. Phys. 11:4271 (1978).CrossRefGoogle Scholar
  20. 20.
    P. J. Feibelman and D. R. Hamann, Electronic structure of metal overlayers on rhodium, Phys. Rev. B, 28:3092 (1983).CrossRefGoogle Scholar
  21. 21.
    J. E. Northrup, Surface states and dipoles on Si(111)lxl:Na, J. Vac. Sci. Technol. A, 4:1404 (1986).CrossRefGoogle Scholar
  22. 22.
    A. Franciosi, P. Soukiassian, P. Philip, S. Chang, A. Wall, A. Raisanen, N. Truillier, Electronic promoters and semiconductor oxidation: Alkali metals on Si(111) surfaces, Phys. Rev. B, 35:910 (1987).CrossRefGoogle Scholar
  23. 23.
    M. A. Olmstead and R. D. Bringans, Initial stages of epitaxial semiconductor-insulator heterointerface formation, J. Electron Spectros. Relat. Phenom., 51:599 (1990).CrossRefGoogle Scholar
  24. 24.
    R. M. Tromp and M. C. Reuter, Structure of the Si(111)-CaF2 interface, Phys. Rev. Lett., 61:1756 (1988).CrossRefGoogle Scholar
  25. 25.
    J. L. Batstone and J. M. Phillips, Evidence for the influence of interfacial atomic structure on electrical properties at the epitaxial CaF2/Si(111) interface, Phys. Rev. Lett., 61:2275 (1988).CrossRefGoogle Scholar
  26. 26.
    J. Zegenhagen and J. R. Patel, CaF2/Si heteroepitaxy: importance of stechiometry, interface bonding and lattice mismatch, Phys.Rev. B, 41:5315 (1990).CrossRefGoogle Scholar
  27. 27.
    S. Satpathy and R. M. Martin, Energetics and valence-band offset of the CaF2/Si insulator-on-semiconductor interface, Phys. Rev. B, 39:8494 (1989).CrossRefGoogle Scholar
  28. 28.
    F. J. Himpsel, P. Heimann, T. C. Chiang and D. E. Eastman, Geometry-dependent Si(2p) surface core-level excitations for Si(111) and Si(100) surfaces, Phys. Rev. Lett., 45:1112 (1980).CrossRefGoogle Scholar
  29. 29.
    M. A. Olmstead, R. I. G. Uhrberg, R. D. Bringans, and R. Z. Bachrach, Photoemission study of bonding at the CaFr-on-Si(111) interface. Phys. Rev. B, 35:7526 (1987).CrossRefGoogle Scholar
  30. 30.
    F. J. Himpsel, U. O. Karlsson, J. F. Morar, D. Rieger, and J. A. Yarmoff, Determination of interface states for CaF2/Si(111) from near-edge X-ray-absorption measurements, Phys. Rev. Lett., 56:1497 (1986).CrossRefGoogle Scholar
  31. 31.
    D. Rieger, F. J. Himpsel, U. O. Karlsson, F. R. McFeely, J. F. Morar, J. A. Yarmoff, Electronic structure of the CaF2/Si(111) interface, Phys. Rev. B 34:7295 (1986).CrossRefGoogle Scholar
  32. 32.
    F. J. Himpsel, F. U. Hillebrecht, G. Hughes, J. L. Jordan, U. O. Karlsson, F. R. McFeely, J. F. Morar and D. Rieger, Structure and bonding at the CaF2/Si(111) interface, Appl. Phys. Lett., 48 (9):596 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • O. Bisi
    • 1
  • S. Ossicini
    • 2
  • C. Arcangeli
    • 2
  1. 1.Dipartimento di FisicaUniversità di TrentoTrentoItaly
  2. 2.Dipartimento di FisicaUniversità di ModenaModenaItaly

Personalised recommendations