Photoemission from Size-Selected Pt-Clusters Deposited on Silver Films

  • H. V. Roy
  • P. Fayet
  • F. Patthey
  • W. D. Schneider
Part of the NATO ASI Series book series (NSSB, volume 283)


When atoms are brought close together to form a solid their outer wave functions overlap and the energy levels of the individual atoms broaden and become the energy bands of condensed matter. The observation of the evolution of this process from the single atom to the bulk as a function of the number of atoms involved would in principle give insight into the size dependence of many properties of condensed matter, for example the onset of metallic behavior, the critical size for a heterogeneous catalytic reaction or the behavior of the melting temperature. Up to now most of the experimental studies of the electronic structure of supported small particles were carried out on evaporated or sputtered thin films when only some average particle size distribution could be achieved.1–5,9. Only recently photoemission data have been obtained from monosize Au and Pt-clusters mass selected and deposited onto amorphous carbon and/or naturally oxidized Si-wafers6,7. The following observations were made: (i) the 4f core-levels of Pt and Au shift to higher binding energies with decreasing cluster size, indicating that the cluster is charged in the photoemission final state8,(ii) for the Au-clusters the valence band width decreases with cluster size as expected for a decreasing coordination number6, (iii) for the Pt-clusters different valence band onsets for different cluster sizes (1–6 atoms) have been observed, where the trend is towards higher binding energies with decreasing cluster size7.


Quadrupole Mass Spectrometer High Binding Energy Silver Film Photoemission Spectrum Cluster Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. G. Mason, Phys. Rev. B27, 748 (1983).Google Scholar
  2. 2.
    S. B. DiCenzo, and G. K. Wertheim, Comments in Solid State, Phys. 11, 203 (1985).Google Scholar
  3. 3.
    V. Murgai, S. Raaen, M. Strongin, and R. F. Garret, Phys. Rev. B33, 4345 (1986).Google Scholar
  4. 4.
    T. T. P. Cheung, Surf. Sci 127 L129 (1983);CrossRefGoogle Scholar
  5. 4a.
    T. T. P. Cheung, Surf. Sci 140, 151 (1984).CrossRefGoogle Scholar
  6. 5.
    G. K. Wertheim, and S. B. DiCenzo, Phys. Rev. B37, 844 (1988).Google Scholar
  7. 6.
    S. B. DiCenzo, S. D. Berry, and E. H. Hartford, Jr., Phys. Rev. B38, 8465 (1988).Google Scholar
  8. 7.
    W. Eberhardt, P. Fayet, D. M. Cox, Z. Fu, A. Kaldor, R. Sherwood, and D. Sondericker, Phys. Rev. Lett. 64, 780 (1990).CrossRefGoogle Scholar
  9. 8.
    G. K. Wertheim, Z. Phys. D 12, 319 (1989).CrossRefGoogle Scholar
  10. 9.
    S. Raaen, and M. Strongin, Phys. Rev. B32, 4289 (1985).Google Scholar
  11. 10.
    S. Hüfner, in: Photoemission in Solids, eds. L. Ley and M. Cardona, Topics in Applied Physics 27, p. 173 (1979).Google Scholar
  12. 11.
    H. H. Andersen and H. L. Bay, Topics in App. Physics, 47, 145 (1981);CrossRefGoogle Scholar
  13. 11a.
    H. H. Andersen and H. L. Bay, “Sputtering by Particle Bombardement I”, ed. R. Behrisch, Springer-Verlag.Google Scholar
  14. 12.
    R. Keller, Proc. of Nato Advanced Study Institute on High-Brightness Accelerators, Pitlochry, Scotland (1986), Plenum Physics Serie: “Brightness Limits for Ion Sources”Google Scholar
  15. 13.
    P. Fayet, and L. Wöste, Spectrom. Int. 3, 91 (1984).Google Scholar
  16. 14.
    P. Fayet, and L. Wöste, Surf. Sci. 156, 134 (1984).CrossRefGoogle Scholar
  17. 15.
    P. Fayet, F. Granzer, G. Hegenbart, E. Moisar, B. Pischel and L. Wöste, Phys. Rev. Lett. 55, 3002 (1985).CrossRefGoogle Scholar
  18. 16.
    R. Hutter, in: Focusing of Charged Particles, ed. A. Septier, Ac. Press Vol. 2 (1967) p. 3.Google Scholar
  19. 17.
    S. M. Goldberg, C. S. Fadley, and S. Kono, J. Electron Spectros. Rel. Phen. 21, 285 (1981).CrossRefGoogle Scholar
  20. 18.
    I. Abbati, L. Braicovich, B. De Michelis, U.Google Scholar
  21. Del Pennino, and S. Valeri, Solid State Commun. 35, 917 (1980).CrossRefGoogle Scholar
  22. 19.
    C. E. Moore: Atomic Energy Levels, NBS Circ. No. 467 (U.S. GPO, Washington, D. C. 1949).Google Scholar
  23. 20.
    J. Friedel, Nuovo Cimento (Suppl.) 7, 287 (1958).CrossRefGoogle Scholar
  24. 21.
    P. W. Anderson, Phys. Rev. 124, 41 (1961).CrossRefGoogle Scholar
  25. 22.
    O. Gunnarsson, and K. Schönhammer, Phys. Rev. Lett. 50, 604 (1983);CrossRefGoogle Scholar
  26. 22a.
    O. Gunnarsson, and K. Schönhammer, Phys. Rev. B28, 4315 (1983).Google Scholar
  27. 23.
    F. Patthey, J.-M. Imer, W.-D. Schneider, H. Beck, Y. Baer, B. Delley, Phys. Rev. B42, 8864 (1990).Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • H. V. Roy
    • 1
  • P. Fayet
    • 1
  • F. Patthey
    • 1
  • W. D. Schneider
    • 1
  1. 1.Institut de Physique ExpérimentaleUniversité de LausanneLausanneSwitzerland

Personalised recommendations