Physical and Chemical Properties of High-Nuclearity Metal-Cluster Compounds: Model Systems for Small Metal Particles

  • L. J. de Jongh
  • H. B. Brom
  • J. M. van Ruitenbeek
  • R. C. Thiel
  • G. Schmid
  • G. Longoni
  • A. Ceriotti
  • R. E. Benfield
  • R. Zanoni
Part of the NATO ASI Series book series (NSSB, volume 283)


In the last few years the above authors have undertaken a collaborative study of the physical and chemical properties of high-nuclearity metal cluster compounds. The collaboration was sponsored by the European Economic Community “Stimulation Action” program. In the course of these studies it has become evident that this interesting class of materials may indeed be viewed as model systems for monodisperse small metal particles, embedded in a dielectric solid. The metal cluster compounds consist of (neutral or ionic) macromolecules, each macromelecule being composed of a core of a certain number (n) of metal atoms, the core being surrounded by a shell of ligands. Since these are chemical compounds, a given compound contains macromolecules of one and the same type, and thus an assembly of identical metal cores. Consequently, the solid formed can be described as a macroscopically large sample of identical metal particles, mutually separated by the ligand shells, which provide an effective means of “chemical stabilization”.


Metal Atom Metal Cluster Metal Core European Economic Community Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Simon, Clusters of valence electron poor metals; structure, bonding and properties, Angew. Chem. Int. Ed. Engl. 27:159 (1988).CrossRefGoogle Scholar
  2. 2.
    See e.g. Ø. Fischer, Chevrel phases: superconducting and normal state properties, Appl. Phys. 27:1 (1988);Google Scholar
  3. 2a.
    T. Hughbanks and R. Hoffman, Molybdenum chalcogenides: clusters, chains and extended solids. The approach to bonding in three dimensions, J. Am. Chem. Soc. 105:1150 (1983);CrossRefGoogle Scholar
  4. 2b.
    P. Gougeon, M. Potel, M. Sergent, and P. Monceau, New superconducting ternary molybdenum chalcogenides with condensed MO6n clusters, Physica 135B:386 (1985).Google Scholar
  5. 3.
    W. Krätschmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffman, Solid C60: a new form of carbon, Nature 347:354 (1990).CrossRefGoogle Scholar
  6. 4.
    G. Longoni, A. Ceriotti, M. Marchionna and G. Piro, Large molecular metal carbonyl clusters: models of metal particles, in: “Surface Organometallic Chemistry: Molecular Approaches to Surface Catalysis”, eds. J.M. Basset et al., Kluwer (1988) p. 157 (and references in this review).Google Scholar
  7. 5.
    G. Schmid, Metal clusters and cluster metals, Polyhedron 7:2321 (1988);CrossRefGoogle Scholar
  8. 5a.
    G. Schmid, Clusters and colloids: bridges between molecular and condensed material, Endeavour, New Series 14:172 (1990);CrossRefGoogle Scholar
  9. 5b.
    G. Schmid, Large transition metal clusters-bridges between homogeneous and heterogeneous catalysts? Aspects of homogeneous catalysis 7:1 (1990) ed. R. Ugo, Kluwer.CrossRefGoogle Scholar
  10. 6.
    M.N. Vargaftik, V.P. Zagorodnikov, I.P. Stolyarov, LI. Moiseev, V.A. Likholobov, D.I. Kochubey, A.l. Chuvilin, V.l. Zaikovsky, K.I. Zamaraev, and G.I. Timofeeva, A novel giant palladium cluster, J. Chem. Soc. Chem. Commun. 937 (1985); see also the contribution of I.I. Moiseev to these proceedings.Google Scholar
  11. 7.
    G. Schmid, B. Morun, and J.-O. Malm, Pt309Phen*36O30±10, a, four-shell platinum cluster, Angew. Chem. Int. Ed. Engl. 28:778 (1989).CrossRefGoogle Scholar
  12. 8.
    J.W.A. van der Velden, Preparation and properties of gold cluster compounds, Ph.D. thesis, Univ. of Nijmegen, The Netherlands (1983).Google Scholar
  13. 9.
    G. Schmid and N. Klein, Neuartige Modifikationen von Gold, Rhodium und Ruthenium — M13-cluster als Bausteine von Superclustern, Angew. Chem. 98:910 (1986);CrossRefGoogle Scholar
  14. 9a.
    G. Schmid, Von Metall Clustern und Clustermetallen, Nachr. Chem. Lab. 34:249 (1987).Google Scholar
  15. 10.
    B.J. Pronk, H.B. Brom and L.J. de Jongh, Physical properties of metal cluster compounds I: Magnetic measurements on high-nuclearity nickel and platinum clusters, Solid State Commun. 59:349 (1986).CrossRefGoogle Scholar
  16. 10a.
    R.E. Benfield, Magnetic properties of molecular metal clusters, in “Physics and Chemistry of Small Clusters”, eds. P. Jena et al., Plenum (1987) p.401;Google Scholar
  17. 10b.
    R.E. Benfield, Electron paramagnetic resonance and quantumsize effects in the cluster molecule H2Os10C(CO)24, J. Phys. Chem. 91:2712 (1987);CrossRefGoogle Scholar
  18. 10c.
    L.J. de Jongh, Magnetic measurements on polynuclear metal cluster compounds. Between molecule and metal, Physica B 155:289 (1989).CrossRefGoogle Scholar
  19. 11.
    F. Raatz and D.R. Salahub, Electronic and magnetic structure of CO on nickel clusters, Surface Science 176:219 (1986);CrossRefGoogle Scholar
  20. 11a.
    G.F. Holland, D.E. Ellis, and W.C. Trogler, Electronic structures of tetrahedral iron, cobalt and nickel clusters. Partial quenching of magnetism in partially carbonylated derivatives, J. Chem. Phys. 83:3507 (1985);CrossRefGoogle Scholar
  21. 11b.
    G. Pacchioni and P. Fantucci, Spin states and quenching of magnetism in naked and carbonylated nickel clusters, Chem. Phys. Lett. 134:407 (1987).CrossRefGoogle Scholar
  22. 12.
    J.M. van Ruitenbeek, M.J.G.M. Jürgens, G. Schmid, D.A. van Leeuwen, H.W. Zandbergen and L.J. de Jongh, Metallic susceptibility in a giant molecule: Pd561Phen36O200, Proceed. 5th Int. Symp. on Small Particles and Inorg. Clusters, Konstanz, Sept. 1990, to appear in Z. Phys.D. 1991.Google Scholar
  23. 12a.
    At the present meeting we learnt that similar results have been found by Moiseev and coworkers, see M.N. Vargaftik et al., Giant palladium clusters as catalysts of oxidative reactions of olefins and alcohols, J. Mol. Cat. 53:329 (1989).Google Scholar
  24. 13.
    J.M. van Ruitenbeek, Orbital magnetism in finite size systems, Proceed. 5th Int. Symp. on Small Particles and Inorg. Clusters, Konstanz, Sept. 1990, to appear in Z.Phys.D (1991).Google Scholar
  25. 14.
    M.P.J. van Staveren, H.B. Brom, L.J. de Jongh and G. Schmid, Physical properties of metal cluster compounds II: D.C.-conductivity of the high-nuclearity gold cluster compound Au55(PPh3)12Cl6, Solid State Commun. 60:319 (1986).CrossRefGoogle Scholar
  26. 15.
    H.B. Brom, M.P.J. van Staveren and L.J. de Jongh, The AC and DC conductivity in aggregates of ligand stabilized metal-cluster molecules, Proceed. 5th Int. Symp. on Small Particles and Clusters, Konstanz, Sept. 1990, to appear in Z.Phys.D (1991).Google Scholar
  27. 16.
    M.P.J. van Staveren, H.B. Brom and L.J. de Jongh, Metal cluster compounds and universal features of the hopping conductivity of solids, to appear in Physics Reports (1991).Google Scholar
  28. 17.
    H.H.A. Smit, R.C. Thiel, L.J. de Jongh, G. Schmid and N. Klein, Physical properties of metal cluster compounds IV: The thermal motion of the Auss-core in Au55(PPh3)12Cl6 as probed by 197Au Mössbauer spectroscopy, Solid State Commun. 65:915 (1988);CrossRefGoogle Scholar
  29. 17a.
    H.H.A. Smit, P.R. Nugteren, R.C. Thiel and L.J. de Jongh, Mössbauer and specific heat studies of the vibrations of metal core atoms in polynuclear gold cluster compounds, Physica B153:33 (1988).Google Scholar
  30. 18.
    G.K. Wertheim, J. Kwo, Boon K. Teo and K.A. Keating, XPS study of bonding in ligated Au clusters, Solid State Commun. 55:357 (1985); and papers 3–6 cited by these authors.CrossRefGoogle Scholar
  31. 19.
    C. Battistoni, G. Mattogno, R. Zanoni and L. Naldini, Characterisation of some gold clusters by X-ray photoelectron spectroscopy, J. Electr. Spectr. 28:23 (1982).CrossRefGoogle Scholar
  32. 20.
    M.G. Mason, proceed, of this meeting; see also M.G. Mason, Electronic structure of supported small metal clusters, Phys. Rev. B27:748 (1983).Google Scholar
  33. 21.
    R.C. Thiel, R. Zanoni and R.E. Benfield, to be published; see also R.C. Thiel, M.W. Dirken and R. Zanoni, A reexamination of the LS. results for the cluster compound Au55(PPh3)12Cl6, Hyperf. Int. 56:1729 (1990).CrossRefGoogle Scholar
  34. 22.
    R.E. Benfield, J.A. Creighton, D.G. Eadon and G. Schmid, The relationship of Au54(PPh3)12Cl6 to colloidal gold, Z. Phys. D 12:533 (1989).CrossRefGoogle Scholar
  35. 23.
    U. Kreibig, Anomalous frequency and temperature dependence of the optical absorption of small gold particles, J. Phys. (Paris), coll.C2, suppl.7, 38:C2–97 (1977).Google Scholar
  36. 24.
    C.R.C. Wang, S. Pollack, and M.M. Kappes, Molecular excited states versus collective electronic oscillations: optical absorption probes of Na4 and Na8, Chem. Phys. Lett. 166:26 (1990).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • L. J. de Jongh
    • 1
  • H. B. Brom
    • 1
  • J. M. van Ruitenbeek
    • 1
  • R. C. Thiel
    • 1
  • G. Schmid
    • 2
  • G. Longoni
    • 3
  • A. Ceriotti
    • 4
  • R. E. Benfield
    • 5
  • R. Zanoni
    • 6
  1. 1.Kamerling Onnes LaboratoryLeiden UniversityR.A. LeidenThe Netherlands
  2. 2.Institut für Anorganische ChemieUniversität EssenEssen 1Germany
  3. 3.Dipartimento di Chimica Fisica e InorganicaUniversita’ degli Studi di BolognaBolognaItaly
  4. 4.Dipartimento di Chimica Inorganica e MetallorganicaUniversita’ degli Studi di MilanoMilanoItaly
  5. 5.Chemical LaboratoryUniversity of Kent at CanterburyCanterburyUK
  6. 6.Dipartimento di ChimicaUniversita’ di RomaRomaItaly

Personalised recommendations