Skip to main content

Metal Clusters and Particles as Catalyst Precursors and Catalysts

  • Chapter
Cluster Models for Surface and Bulk Phenomena

Part of the book series: NATO ASI Series ((NSSB,volume 283))

Abstract

Bulk metals are used in only a few processes as catalysts where a reasonably high surface area is stabilized by so-called structural promoters. The most prominent example of this class of catalysts is undoubtedly the NH3 synthesis catalyst.1,2 Since metals, in particular noble metals, have high surface free energies, they tend to aggregate unless small particles can be stabilized by placing them on the surface of suitable supports. This class of supported metal catalysts is technologically extremely important. They are efficiently used in selective hydrogénations,3,4 the control of motor-vehicle exhaust gases (three-way catalyst)5 and in catalytic reforming.6–8 High metal surface areas can be obtained when small metal particles are stabilized on support surfaces in high dispersion.9,10 Dispersion is defined as the fraction of metal atoms being exposed. For example, a Pt particle with a diameter of about 1 nm contains less than 50 atoms und has a dispersion close to 100%. This is particularly important for the catalytically highly active, but very expensive noble metals. For economic reasons one has to achieve optimal catalytic efficiency per unit mass of noble metal, and hence, small particles providing high dispersion are demanded. Platinum is in fact one of the most widely used noble metals in catalysis. It finds application in car exhaust catalysts, 5 in hydrogenations 3,4 and catalytic reforming.6-8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Merriam and K. Atwood, in: “Applied Industrial Catalysis”, Vol. 3, p. 113, B. C. Leach, ed., Academic Press, New York, London, 1983.

    Google Scholar 

  2. G. Ertl, in: “Catalytic Ammonia Synthesis”, J. R. Jennings, ed., Plenum Press, New York, in print.

    Google Scholar 

  3. R. L. Augustine, “Catalytic Hydrogénation”, M. Dekker, New York, 1965.

    Google Scholar 

  4. G. Webb, in: “Catalysis”, Specialist Periodical Reports, Vol. 2, p. 145, Roy. Soc. Chem., London, 1978.

    Google Scholar 

  5. W. S. Briggs, in: “Applied Industrial Catalysis”, Vol. 3, p. 24, B. E. Leach, ed., Academic Press, New York, London, 1983.

    Google Scholar 

  6. B. C. Gates, J. R. Katzer and G. C. A. Schuit, “Chemistry of Catalytic Processes”, Mc Graw, New York, 1979.

    Google Scholar 

  7. M. D. Edgar, in: “Applied Industrial Catalysis”, Vol. 1, p. 124, B. E. Leach, ed., Academic Press, New York, London, 1983.

    Google Scholar 

  8. D. A. Dowden, in: “Catalysis”, Specialist Periodical Reports, Vol. 2, p. 1, Roy. Soc. Chem., London, 1978.

    Google Scholar 

  9. J. R. Anderson, “Structure of Metallic Catalysts”, Academic Press, New York, 1975.

    Google Scholar 

  10. K. Foger, in: “Catalysis-Science and Technology”, J. R. Anderson and M. Boudart, eds., Springer, Berlin, Heidelberg, New York, Vol. 6, p. 227, 1984.

    Google Scholar 

  11. S. A. Stevenson, J. A. Dûmesic, R. T. K. Baker and E. Ruckenstein, “Metal-Support Interactions in Catalysis, Sintering and Redispersion”, Chapman and Hall, London, 1987.

    Google Scholar 

  12. M. Che and C. O. Bennet, Adv. Catal. 36: 55 (1989).

    Article  CAS  Google Scholar 

  13. B. C. Gates, L. Guczi and H. Knözinger, eds., “Metal Clusters in Catalysis”, Elsevier, Amsterdam, Oxford, New York, Tokyo, 1986.

    Google Scholar 

  14. H. H. Lamb, B. C. Gates and H. Knözinger, Anqew. Chem. Int. Ed. Engl. 27: 1127 (1988).

    Article  Google Scholar 

  15. R. Psaro, R. Ugo, G. M. Zanderighi, B. Besson, A. K. Smith and J. M. Basset, J. Orqanomet. Chem. 213:215 (1981).

    Article  CAS  Google Scholar 

  16. M. Deeba and B. C. Gates, J. Catal. 67:303 (1981);

    Article  Google Scholar 

  17. H. Knözinger and Y. Zhao, J. Catal. 71:337 (1981).

    Article  Google Scholar 

  18. L. D’Ornelas, A. Choplin, J. M. Basset, L.-Y. Hsu and S. Shore, Nouv. J. Chim. 9:155 (1985).

    Google Scholar 

  19. F. B. M. Duivenvoorden, D. C. Koningsberger, Y. S. Uh and B. C. Gates, J. Amer. Chem. Soc. 108:6254 (1986).

    Article  CAS  Google Scholar 

  20. B. Tesche, E. Zeitler, E. A. Delgado and H. Knözinger, Proc. 40th Electron Microsc. Soc. Am. Meeting, Washington 1982, p. 658.

    Google Scholar 

  21. B. Tesche, E. A. Delgado and H. Knözinger, in preparation.

    Google Scholar 

  22. H. Knözinger, Y. Zhao, B. Tesche, R. Barth, R. Epstein, B. C. Gates and J. P. Scott, Faraday Disc. Chem. Soc.72:53 (1981).

    Article  Google Scholar 

  23. R. Psaro and R. Ugo, in ref.13, p. 427.

    Google Scholar 

  24. J. M. Basset, B. Besson, A. Choplin, F. Hugues, M. Leconte, D. Rojas, A. K. Smith, A. Theolier, Y. Chauvin, D. Commereuc, R. Psaro, R. Ugo and G. M. Zanderighi, Fundam. Res. Homogeneous Catal. 4:19 (1984).

    CAS  Google Scholar 

  25. S. L. Cook, J. Evans, G. S. McNulty and G. N. Greaves, J. Chem. Soc. Dalton Trans. 7 (1986).

    Google Scholar 

  26. M. Deeba, J. P. Scott, R. Barth and B. C. Gates, J. Catal. 71:373 (1981)

    Article  Google Scholar 

  27. R. Psaro, C. Dossi and R. Ugo, J. Mol. Catal. 21:331 (1983).

    CAS  Google Scholar 

  28. A. S. Fung, P. A. Tooley, M. J. Kelley and B. C. Gates, J. Chem. Soc. Chem. Commun. 371 (1988).

    Google Scholar 

  29. A. K. Smith, F. Hugues, A. Theolier, J. M. Basset, R. Ugo, G. M. Zanderighi, J. L. Bilhou, V. Bilhou-Bougnol and W. F. Graydon, Inorg. Chem. 18:3104 (1979).

    Article  CAS  Google Scholar 

  30. J. M. Basset, A. Theolier, D. Commereuc and Y. Chauvin, J. Organomet. Chem. 279:147 (1985).

    Article  CAS  Google Scholar 

  31. J. L. Robbins, J. Phys. Chem. 90:3381 (1986).

    Article  CAS  Google Scholar 

  32. W. M. Bowser and W. H. Weinberg, J. Amer. Chem. Soc. 103:1453 (1981).

    Article  CAS  Google Scholar 

  33. P. Chini, G. Longoni and V. G. Albano, Adv. Organomet. Chem. 14:285 (1976).

    Article  CAS  Google Scholar 

  34. J. A. Connor, Top. Curr. Chem. 71:71 (1977).

    Article  CAS  Google Scholar 

  35. E. L. Muetterties, T. N. Rhodin, E. Band, C. F. Brucker and W. R. Pretzer, Chem. Rev. 79:91 (1979).

    Article  CAS  Google Scholar 

  36. L. Brewer, Science 161:115 (1968).

    Article  CAS  Google Scholar 

  37. G. Ertl, in ref.13, p. 577.

    Google Scholar 

  38. H. F. J. van’t Blik, J. B. A. D. van Zon, T. Huizinga, J. C. Vis, D. C. Koningsberger and R. Prins, J. Amer. Chem. Soc. 107:3139 (1985).

    Article  Google Scholar 

  39. M. Primet, J. Chem. Soc. Faraday Trans. I74:2570 (1978).

    Article  CAS  Google Scholar 

  40. M. Zaki, G. Kunzmann, B. C. Gates and H. Knözinger, J. Phys. Chem. 91:1486 (1987).

    Article  CAS  Google Scholar 

  41. T. Beutel and H. Knözinger, to be published.

    Google Scholar 

  42. P. Basu, D. Panayotov and J. T. Yates, Jr., J. Phys. Chem. 91:3133 (1987).

    Article  CAS  Google Scholar 

  43. A. S. Fung, P. A. Tooley, M. J. Kelley and B. C. Gates, J. Chem. Soc. Chem. Commun. 371 (1988);

    Google Scholar 

  44. H. H. Lamb, T. R. Krause and B. C. Gates, J. Chem. Soc. Chem. Commun. 821 (1986);

    Google Scholar 

  45. H. H. Lamb and B. C. Gates, J. Amer. Chem. Soc. 108:821 (1986)

    Google Scholar 

  46. P. A. Jacobs, in ref.13, p. 357.

    Google Scholar 

  47. L. L. Sheu, H. Knözinger and W. M. H. Sachtler, Catal. Letters 2:129 (1989).

    Article  CAS  Google Scholar 

  48. V. G. Albano, A. Ceriotti, P. Chini, G. Ciani, S. Martinengo and M. Anker, J. Chem. Soc. Chem. Commun. 859 (1975);

    Google Scholar 

  49. V. G. Albano, G. Ciani, S. Martinengo and S. Sironi, J. Chem. Soc. Dalton 978 (1976).

    Google Scholar 

  50. W. Vogel, Z. Zhang, W. M. H. Sachtler and H. Knözinger, to be published.

    Google Scholar 

  51. V. Gnutzmann and W. Vogel, J. Phys. Chem. 94:4991 (1990);

    Article  CAS  Google Scholar 

  52. W. Vogel, J. Catal. 121:356 (1990).

    Article  CAS  Google Scholar 

  53. Z. Zhang, H. Chen, L.-L. Sheu and W. M. H. Sachtler, J. Catal. 127:213 (1991).

    Article  CAS  Google Scholar 

  54. R. A. van Santen, in: “Fundamental Aspects of Heterogeneous Catalysis by Particle Beams”, H. H. Brongersma and R. A. van Santen, eds., Plenum Press. New York, in print.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Knözinger, H. (1992). Metal Clusters and Particles as Catalyst Precursors and Catalysts. In: Pacchioni, G., Bagus, P.S., Parmigiani, F. (eds) Cluster Models for Surface and Bulk Phenomena. NATO ASI Series, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6021-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6021-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6023-0

  • Online ISBN: 978-1-4684-6021-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics