Advertisement

Metal Clusters and Particles as Catalyst Precursors and Catalysts

  • H. Knözinger
Part of the NATO ASI Series book series (NSSB, volume 283)

Abstract

Bulk metals are used in only a few processes as catalysts where a reasonably high surface area is stabilized by so-called structural promoters. The most prominent example of this class of catalysts is undoubtedly the NH3 synthesis catalyst.1,2 Since metals, in particular noble metals, have high surface free energies, they tend to aggregate unless small particles can be stabilized by placing them on the surface of suitable supports. This class of supported metal catalysts is technologically extremely important. They are efficiently used in selective hydrogénations,3,4 the control of motor-vehicle exhaust gases (three-way catalyst)5 and in catalytic reforming.6–8 High metal surface areas can be obtained when small metal particles are stabilized on support surfaces in high dispersion.9,10 Dispersion is defined as the fraction of metal atoms being exposed. For example, a Pt particle with a diameter of about 1 nm contains less than 50 atoms und has a dispersion close to 100%. This is particularly important for the catalytically highly active, but very expensive noble metals. For economic reasons one has to achieve optimal catalytic efficiency per unit mass of noble metal, and hence, small particles providing high dispersion are demanded. Platinum is in fact one of the most widely used noble metals in catalysis. It finds application in car exhaust catalysts, 5 in hydrogenations 3,4 and catalytic reforming.6-8

Keywords

Metal Particle Metal Carbonyl Cluster Compound Cluster Precursor Carbonyl Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Merriam and K. Atwood, in: “Applied Industrial Catalysis”, Vol. 3, p. 113, B. C. Leach, ed., Academic Press, New York, London, 1983.Google Scholar
  2. 2.
    G. Ertl, in: “Catalytic Ammonia Synthesis”, J. R. Jennings, ed., Plenum Press, New York, in print.Google Scholar
  3. 3.
    R. L. Augustine, “Catalytic Hydrogénation”, M. Dekker, New York, 1965.Google Scholar
  4. 4.
    G. Webb, in: “Catalysis”, Specialist Periodical Reports, Vol. 2, p. 145, Roy. Soc. Chem., London, 1978.Google Scholar
  5. 5.
    W. S. Briggs, in: “Applied Industrial Catalysis”, Vol. 3, p. 24, B. E. Leach, ed., Academic Press, New York, London, 1983.Google Scholar
  6. 6.
    B. C. Gates, J. R. Katzer and G. C. A. Schuit, “Chemistry of Catalytic Processes”, Mc Graw, New York, 1979.Google Scholar
  7. 7.
    M. D. Edgar, in: “Applied Industrial Catalysis”, Vol. 1, p. 124, B. E. Leach, ed., Academic Press, New York, London, 1983.Google Scholar
  8. 8.
    D. A. Dowden, in: “Catalysis”, Specialist Periodical Reports, Vol. 2, p. 1, Roy. Soc. Chem., London, 1978.Google Scholar
  9. 9.
    J. R. Anderson, “Structure of Metallic Catalysts”, Academic Press, New York, 1975.Google Scholar
  10. 10.
    K. Foger, in: “Catalysis-Science and Technology”, J. R. Anderson and M. Boudart, eds., Springer, Berlin, Heidelberg, New York, Vol. 6, p. 227, 1984.Google Scholar
  11. 11.
    S. A. Stevenson, J. A. Dûmesic, R. T. K. Baker and E. Ruckenstein, “Metal-Support Interactions in Catalysis, Sintering and Redispersion”, Chapman and Hall, London, 1987.Google Scholar
  12. 12.
    M. Che and C. O. Bennet, Adv. Catal. 36: 55 (1989).CrossRefGoogle Scholar
  13. 13.
    B. C. Gates, L. Guczi and H. Knözinger, eds., “Metal Clusters in Catalysis”, Elsevier, Amsterdam, Oxford, New York, Tokyo, 1986.Google Scholar
  14. 14.
    H. H. Lamb, B. C. Gates and H. Knözinger, Anqew. Chem. Int. Ed. Engl. 27: 1127 (1988).CrossRefGoogle Scholar
  15. 15.
    R. Psaro, R. Ugo, G. M. Zanderighi, B. Besson, A. K. Smith and J. M. Basset, J. Orqanomet. Chem. 213:215 (1981).CrossRefGoogle Scholar
  16. 16a.
    M. Deeba and B. C. Gates, J. Catal. 67:303 (1981);CrossRefGoogle Scholar
  17. 16b.
    H. Knözinger and Y. Zhao, J. Catal. 71:337 (1981).CrossRefGoogle Scholar
  18. 17.
    L. D’Ornelas, A. Choplin, J. M. Basset, L.-Y. Hsu and S. Shore, Nouv. J. Chim. 9:155 (1985).Google Scholar
  19. 18.
    F. B. M. Duivenvoorden, D. C. Koningsberger, Y. S. Uh and B. C. Gates, J. Amer. Chem. Soc. 108:6254 (1986).CrossRefGoogle Scholar
  20. 19a.
    B. Tesche, E. Zeitler, E. A. Delgado and H. Knözinger, Proc. 40th Electron Microsc. Soc. Am. Meeting, Washington 1982, p. 658.Google Scholar
  21. 19b.
    B. Tesche, E. A. Delgado and H. Knözinger, in preparation.Google Scholar
  22. 20.
    H. Knözinger, Y. Zhao, B. Tesche, R. Barth, R. Epstein, B. C. Gates and J. P. Scott, Faraday Disc. Chem. Soc.72:53 (1981).CrossRefGoogle Scholar
  23. 21.
    R. Psaro and R. Ugo, in ref.13, p. 427.Google Scholar
  24. 22.
    J. M. Basset, B. Besson, A. Choplin, F. Hugues, M. Leconte, D. Rojas, A. K. Smith, A. Theolier, Y. Chauvin, D. Commereuc, R. Psaro, R. Ugo and G. M. Zanderighi, Fundam. Res. Homogeneous Catal. 4:19 (1984).Google Scholar
  25. 23.
    S. L. Cook, J. Evans, G. S. McNulty and G. N. Greaves, J. Chem. Soc. Dalton Trans. 7 (1986).Google Scholar
  26. 24a.
    M. Deeba, J. P. Scott, R. Barth and B. C. Gates, J. Catal. 71:373 (1981)CrossRefGoogle Scholar
  27. 24b.
    R. Psaro, C. Dossi and R. Ugo, J. Mol. Catal. 21:331 (1983).Google Scholar
  28. 24c.
    A. S. Fung, P. A. Tooley, M. J. Kelley and B. C. Gates, J. Chem. Soc. Chem. Commun. 371 (1988).Google Scholar
  29. 25a.
    A. K. Smith, F. Hugues, A. Theolier, J. M. Basset, R. Ugo, G. M. Zanderighi, J. L. Bilhou, V. Bilhou-Bougnol and W. F. Graydon, Inorg. Chem. 18:3104 (1979).CrossRefGoogle Scholar
  30. 25b.
    J. M. Basset, A. Theolier, D. Commereuc and Y. Chauvin, J. Organomet. Chem. 279:147 (1985).CrossRefGoogle Scholar
  31. 26.
    J. L. Robbins, J. Phys. Chem. 90:3381 (1986).CrossRefGoogle Scholar
  32. 27.
    W. M. Bowser and W. H. Weinberg, J. Amer. Chem. Soc. 103:1453 (1981).CrossRefGoogle Scholar
  33. 28.
    P. Chini, G. Longoni and V. G. Albano, Adv. Organomet. Chem. 14:285 (1976).CrossRefGoogle Scholar
  34. 29.
    J. A. Connor, Top. Curr. Chem. 71:71 (1977).CrossRefGoogle Scholar
  35. 30.
    E. L. Muetterties, T. N. Rhodin, E. Band, C. F. Brucker and W. R. Pretzer, Chem. Rev. 79:91 (1979).CrossRefGoogle Scholar
  36. 31.
    L. Brewer, Science 161:115 (1968).CrossRefGoogle Scholar
  37. 32.
    G. Ertl, in ref.13, p. 577.Google Scholar
  38. 33.
    H. F. J. van’t Blik, J. B. A. D. van Zon, T. Huizinga, J. C. Vis, D. C. Koningsberger and R. Prins, J. Amer. Chem. Soc. 107:3139 (1985).CrossRefGoogle Scholar
  39. 34.
    M. Primet, J. Chem. Soc. Faraday Trans. I74:2570 (1978).CrossRefGoogle Scholar
  40. 35.
    M. Zaki, G. Kunzmann, B. C. Gates and H. Knözinger, J. Phys. Chem. 91:1486 (1987).CrossRefGoogle Scholar
  41. 36.
    T. Beutel and H. Knözinger, to be published.Google Scholar
  42. 37.
    P. Basu, D. Panayotov and J. T. Yates, Jr., J. Phys. Chem. 91:3133 (1987).CrossRefGoogle Scholar
  43. 38a.
    A. S. Fung, P. A. Tooley, M. J. Kelley and B. C. Gates, J. Chem. Soc. Chem. Commun. 371 (1988);Google Scholar
  44. 38b.
    H. H. Lamb, T. R. Krause and B. C. Gates, J. Chem. Soc. Chem. Commun. 821 (1986);Google Scholar
  45. 38c.
    H. H. Lamb and B. C. Gates, J. Amer. Chem. Soc. 108:821 (1986)Google Scholar
  46. 39.
    P. A. Jacobs, in ref.13, p. 357.Google Scholar
  47. 40.
    L. L. Sheu, H. Knözinger and W. M. H. Sachtler, Catal. Letters 2:129 (1989).CrossRefGoogle Scholar
  48. 41a.
    V. G. Albano, A. Ceriotti, P. Chini, G. Ciani, S. Martinengo and M. Anker, J. Chem. Soc. Chem. Commun. 859 (1975);Google Scholar
  49. 41b.
    V. G. Albano, G. Ciani, S. Martinengo and S. Sironi, J. Chem. Soc. Dalton 978 (1976).Google Scholar
  50. 42.
    W. Vogel, Z. Zhang, W. M. H. Sachtler and H. Knözinger, to be published.Google Scholar
  51. 43a.
    V. Gnutzmann and W. Vogel, J. Phys. Chem. 94:4991 (1990);CrossRefGoogle Scholar
  52. 43b.
    W. Vogel, J. Catal. 121:356 (1990).CrossRefGoogle Scholar
  53. 44.
    Z. Zhang, H. Chen, L.-L. Sheu and W. M. H. Sachtler, J. Catal. 127:213 (1991).CrossRefGoogle Scholar
  54. 45.
    R. A. van Santen, in: “Fundamental Aspects of Heterogeneous Catalysis by Particle Beams”, H. H. Brongersma and R. A. van Santen, eds., Plenum Press. New York, in print.Google Scholar

Copyright information

© Plenum Press, New York 1992

Authors and Affiliations

  • H. Knözinger
    • 1
  1. 1.Institut für Physikalische ChemieUniversität MünchenMünchen 2Germany

Personalised recommendations