Regulation of the ras Pathway in the Fission Yeast Schizosaccharomyces Pombe

  • David A. Hughes
  • Yoshiyuki Imai
  • Masayuki Yamamoto
Part of the NATO ASI Series book series (NSSA, volume 220)


Homologs of the mammalian ras genes have been found in the simple unicellular yeasts Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) (reviewed in Gibbs and Marshall, 1989). Using classical and molecular genetic approaches considerable progress has been made in understanding the function and regulation of ras in these organisms. In this paper we will describe our recent results on the regulation of the ras pathway in S. pombe.


Fission Yeast Nitrogen Starvation Schizosaccharomyces Pombe CDC25 Gene Mating Pheromone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boy-Marcotte, E., Damak, F., Camonis, J., Garreau, H., and Jacquet, M., 1989, The C-terminal part of a gene partially homologous to the CDC25 gene suppresses the cdc25–5 mutation in Sacharomyces cerevisiae, Gene, 77:21–30.PubMedCrossRefGoogle Scholar
  2. Broek, D., Toda, T., Michel, T., Levin, L., Birchmeier, C., Zoller, M., Powers, S., and Wigler, M., 1987, The Saccharomyces cerevisiae CDC25 gene product regulates the ft4S/adenylate cyclase pathway, Cell 48:789–799.PubMedCrossRefGoogle Scholar
  3. Camonis, J., and Jacquet, M., 1988, A new RAS mutation which suppresses the CDC25 gene requirement for growth in Saccharomyces cerevisiae, Mol. Cell. Biol., 8:2980–2983.PubMedGoogle Scholar
  4. Camonis, J. H., Kalekine, M., Gondre, B., Garreau, H., Boy-Marcotte, E., and Jacquet, M., 1986, Characterization, cloning and sequence analysis of the CDC25 gene which controls the cAMP level of Saccharomyces cerevisiae, EMBO J., 5:375–380.PubMedGoogle Scholar
  5. Crechet, J. B., Poullet, P., Mistou, M. Y., Parmeggiani, A., Camonis, J., Boy-Marcotte, E., and Jacquet, M., 1990, Enhancement of the GDP-GTP exchange of RAS proteins by the carboxy-terminal domain of SDC25, Science, 248:866–868.PubMedCrossRefGoogle Scholar
  6. Damak, F., Boy-Marcotte, E., Le-Roscouet, D., Guilbaund, R., and Jacquet, M., 1991, SDC25, a CDC25-like gene which contains a RAS-activating domain and is a dispensable gene of Saccharomyces cerevisiae, Mol. Cell. Biol., 11:202–212.PubMedGoogle Scholar
  7. Fukui, Y., and Kaziro, Y., 1985, Molecular cloning and sequence analysis of a ras gene from Schizosaccharomyces pombe, EMBO J., 4:687–691.PubMedGoogle Scholar
  8. Fukui, Y., and Yamamoto, M., 1988, Isolation and characterization of Schizosaccharomyces pombe mutants phenotypically similar to rasl, Mol. Gen. Genet., 2156:26–31.CrossRefGoogle Scholar
  9. Fukui, Y., Kozasa, T., Kaziro, Y., Takeda, T., and Yamamoto, M., 1986a, Role of a ras homolog in the life cycle of Schizosaccharomyces pombe, Cell, 44:329–336.PubMedCrossRefGoogle Scholar
  10. Fukui, Y., Kaziro, Y., and Yamamoto, M., 1986b, Mating pheromone-like diffusible factor released by Schizosaccharomyces pombe, EMBO. J., 5:1991–1993.PubMedGoogle Scholar
  11. Fukui, Y., Miyaké, S., and Yamamoto, M., 1989, Characterization of the Schizosaccharomyces pombe ral2 gene implicated in activation of the ras1 gene product, Mol. Cell. Biol., 9:5617–5622.PubMedGoogle Scholar
  12. Gibbs, J. B., and Marshall, M. S., 1989, The ras oncogene — an important regulatory element in lower eukaryotic organisms, Microbiol. Rev., 53:171–185.PubMedGoogle Scholar
  13. Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C., 1989, All ras proteins are polyisoprenylated but only some are palmitoylated, Cell, 57:1167–1177PubMedCrossRefGoogle Scholar
  14. Hughes, D. A., Fukui, Y., and Yamamoto, M., 1990, Homologous activators of ras in fission and budding yeast, Nature (London), 344:355–357.CrossRefGoogle Scholar
  15. Imai, Y., Miyake, S., Hughes, D. A., and Yamamoto, M., 1991, Identification of a GAP homolog in Schizosaccharomyces pombe, Mol. Cell. Biol., in press.Google Scholar
  16. Jones, S., Vignais, M.-L., and Broach, J. R., 1991, The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to Ras, Mol. Cell. Biol., 11:2641–2646.PubMedGoogle Scholar
  17. Kataoka, T., Powers, S., McGill, C., Fasano, O., Golfarb, M., Broach, J. R., and Wigler, M., 1984, Genetic analysis of yeast RASI and RAS2 genes, Cell, 37:437–445.PubMedCrossRefGoogle Scholar
  18. McCormick, F., 1989, Ras GTPase activating protein: signal transmitter and signal terminator, Cell, 56:5–8.PubMedCrossRefGoogle Scholar
  19. Nadin-Davis, S. A., and Nasim, A., 1990, Schizosaccharomyces pombe ras1 and byr1 are functionally related genes of the ite family that affect starvation-induced transcription of the mating-type genes, Mol. Cell. Biol., 10:549–560.PubMedGoogle Scholar
  20. Nadin-Davis, S. A., Yang, R. C. A., Narang, S. A., and Nasim, A., 1986a, The cloning and characterization of a RAS gene from Schizosaccharomyces pombe, J. Mol. Evol., 23:41–51PubMedCrossRefGoogle Scholar
  21. Nadin-Davis, S. A., Nasim, A., and Beach, D., 1986b, Involvement of ras in sexual differentiation but not in growth control in fission yeast, EMBO J., 5:2963–2971.PubMedGoogle Scholar
  22. Neer, E. J., and Clapham, D. E., 1988, Roles of G protein subunits in transmembrane signalling, Nature (London), 333:129–134.CrossRefGoogle Scholar
  23. Obara, T., Nakafuku, M., Yamamoto, M., and Kaziro, Y., 1991, Isolation and characterization of the gene encoding G protein α-subunit from Schizosaccharomyces pombe: Involvement in mating and sporulation pathways, Proc. Natl. Acad. Sci. USA., in press.Google Scholar
  24. Robinson, L. C., Gibbs, J. B., Marshall, M. S., Sigal, I. S., and Tatchell, K., 1987, CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae, Science, 235:1218–1221.PubMedCrossRefGoogle Scholar
  25. Tanaka, K., Matsumoto, K., and Toh-e, A., 1989, IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae, Mol. Cell. Biol., 9:757–768.PubMedGoogle Scholar
  26. Tanaka, K., Nakafuku, M., Tamanoi, F., Kaziro, Y., Matsumoto, K., and Toh-e, A., 1990, IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein, Mol. Cell. Biol., 10:4303–4313.PubMedGoogle Scholar
  27. Tatchell, K., Chaleff, D., DeFoe-Jones, D., and Scolnick, E. M., 1984, Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability, Nature (London), 309:523–527.CrossRefGoogle Scholar
  28. Trahey, M., Wong, G., Haienbeck, R., Rubinfield, B., Martin, G., Ladner, M., Long, C., Crosier, W., Watt, K., Koths, K., and McCormick, F., 1988, Molecular cloning of two types of GAP complementary DNA from human placenta, Science, 242:1697–1700.PubMedCrossRefGoogle Scholar
  29. Vogel, U., Dixson, R., Schaber, M., Diehl, R., Marshall, M., Scolnick, E., Sigal, I., and Gibbs, J., 1988, Cloning of bovine GAP and its interaction with oncogenic ras p21, Nature (London), 335:90–93.CrossRefGoogle Scholar
  30. Xu, G., O’Connell, P., Viskochil, D., Cawthon, R., Robertson, M., Culver, M., Dunn, D., Stevens, J., Gesteland, R., White, R., and Weiss, R., 1990, The neurobibromatosis type 1 gene encodes a protein related to GAP, Cell, 62:599–608.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • David A. Hughes
    • 1
  • Yoshiyuki Imai
    • 1
  • Masayuki Yamamoto
    • 1
  1. 1.Department of Biophysics and Biochemistry, Faculty of ScienceUniversity of TokyoTokyo 113Japan

Personalised recommendations