Phosphorylation of rap Proteins by the cAMP-Dependent Protein Kinase

  • Isabelle Lerosey
  • Véronique Pizon
  • Armand Tavitian
  • Jean de Gunzburg
Part of the NATO ASI Series book series (NSSA, volume 220)


The products of rap genes (rap1A, rap1B, rap2A, rap2B) are small molecular weight GTP-binding proteins that exhibit striking similarities with ras p21s1–4. In particular, ras and rap proteins share a conserved “effector” region spanning residues 32–42 through which ras-p21s are thought to exert their biological effects; they also have a C-terminal CAAX sequence (where A is an aliphatic residue and X any amino acid) responsible for posttranslational modification and membrane binding of ras proteins5. The identity of the “effector” domain between ras and rap proteins had suggested that rap proteins could antagonize the activity of ras proteins by competing for a common effector. Independently, M. Noda’s group isolated a cDNA, Krev-1, whose overexpression could revert the transformed phenotype of Kirsten sarcoma-virus transformed NIH 3T3 cells6; the sequence of the Krev-1 protein was identical to that of the rap1A protein. Moreover, in vitro, the rap1A protein has been shown to be able to compete efficiently with ras p21 for interaction with GAP7(GTPase Activating protein), which may constitute the effector of ras p218–12.


Serum Deprivation Consensus Site Calcium Ionophore A23187 Intact Fibroblast CAAX Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1-.
    Pizon, V., Chardin, P., Lerosey, I., Olofsson, B. and Tavitian, A. (1988) Oncogene 3, 201–204PubMedGoogle Scholar
  2. 2-.
    Pizon, V., Lerosey, L, Chardin, P. and Tavitian, A. (1988) Nucleic Acids Res. 16, 7719PubMedCrossRefGoogle Scholar
  3. 3-.
    Kawata, M, Matsui, Y., Kondo, J., Hishida, T., Teranishi, Y. and Takai, Y. (1988) J. Biol. Chem. 263, 18965–18971PubMedGoogle Scholar
  4. 4-.
    Ohmstede, C.-A., Farrell, F.X., Reep, B.R., Clemetson, K.J. and Lapetina, E.G. (1990) Proc. Natl Acad. Sci. USA 87, 6527–6531PubMedCrossRefGoogle Scholar
  5. 5-.
    Barbacid, M. (1897) Annu. Rev. Biochem. 56, 779–827CrossRefGoogle Scholar
  6. 6-.
    Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y. and Noda, M. (1989) Cell 56, 77–84PubMedCrossRefGoogle Scholar
  7. 7-.
    Frech, M., John, J., Pizon, V., Chardin, P., Tavitian, A., Clark, R., McCormick, F. and Wittinghofer, A. (1990) Science 249, 169–171PubMedCrossRefGoogle Scholar
  8. 8-.
    Trahey, M. and McCormick, F. (1987) Science 238, 542–545PubMedCrossRefGoogle Scholar
  9. 9-.
    Calés, C, Hancock, J.F., Marshall, C.J. and Hall, A. (1988) Nature 332, 548–551PubMedCrossRefGoogle Scholar
  10. 10-.
    Adari, H., Lowy, D.R., Willumsen, B.M., Der, C.J. and McCormick, F. (1988) Science 240, 518–521PubMedCrossRefGoogle Scholar
  11. 11-.
    Vogel, U.S., Dixon, R., Schaber, M.D., Diehl, R.E., Marshall, M.S., Scolnick, E.M., Sigal, LS. and Gibbs, J.B. (1988) Nature 335, 90–93PubMedCrossRefGoogle Scholar
  12. 12-.
    McCormick, F. (1989) Cell 56, 5–8PubMedCrossRefGoogle Scholar
  13. 13-.
    Hoshijima, M., Kikuchi, A., Kawata, M., Ohmori, T., Hashimoto, E., Yamamura, H. and Takai, Y. (1988) Biochem. Biophys. Res. Commun. 157, 851–860PubMedCrossRefGoogle Scholar
  14. 14-.
    Kawata, M., Kikuchi, A., Hoshijima, M., Yamamoto, K., Hashimoto, E., Yamamura, H. and Takai, Y. (1989) J. Biol. Chem. 264, 15688–15695PubMedGoogle Scholar
  15. 15-.
    Lapetina, E.G., Lacal, J.C., Reep, B.R. and y Vedia, L.M. (1989) Proc. Natl. Acad. Sci. USA 86, 3131–3134PubMedCrossRefGoogle Scholar
  16. 16-.
    Siess, W., Winegar, D.A. and Lapetina, E.G. (1990) Biochem. Biophys. Res. Commun. 170, 944–950PubMedCrossRefGoogle Scholar
  17. 17-.
    Fisher, T.H., Gatling, M.N., Lacal, J.C. and White, G.C. (1990) J. Biol. Chem. 265, 19405–19408Google Scholar
  18. 18-.
    Lerosey, I., Chardin, P., de Gunzburg, J. and Tavitian A. (1991) J. Biol. Chem. 266, 4315–4321PubMedGoogle Scholar
  19. 19-.
    Béranger, F., Goud, B., Tavitian, A. and de Gunzburg, J. (1991) Proc. Natl. Acad. Sci. USA 88, 1606–1610PubMedCrossRefGoogle Scholar
  20. 20-.
    Edelman, A.M., Blumenthal, D.K. and Krebs, E.G. (1987) Ann. Rev. Biochem. 56, 567–613PubMedCrossRefGoogle Scholar
  21. 21-.
    Ballester, R., Furth, M.E. and Rosen, O.M. (1987) J. Biol. Chem. 262, 2688–2695PubMedGoogle Scholar
  22. 22-.
    Jeng, A.Y., Srivastava, S.K., Lacal, J.C. and Blumberg, P.M. (1987) Biochem. Biophys. Res. Commun. 145, 782–788PubMedCrossRefGoogle Scholar
  23. 23-.
    Saikumar, P., Ulsh, L.S., Clanton, D.J., Huang, K.-P. and Shih T.Y. (1988) Oncogene Res. 3, 213–222PubMedGoogle Scholar
  24. 24-.
    de Gunzburg, J., Rielh, R. and Weinberg, R.A. (1989) Proc. Natl.Acad. Sci. 86, 4007–4011PubMedCrossRefGoogle Scholar
  25. 25-.
    Burgering, B.M.T., Snijders, A.J., Maasen, J.A.,Van der Eb, A.J. and Bos, J.L. (1989) Mol. Cell. Biol 9, 4312–4322PubMedGoogle Scholar
  26. 26-.
    Hata, Y., Kaibuchi, K., Kawamura, M., Shirataki, H. and Takai, Y. (1991) J. Biol. Chem. 266, 6571–6577PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Isabelle Lerosey
    • 1
  • Véronique Pizon
    • 1
  • Armand Tavitian
    • 1
  • Jean de Gunzburg
    • 1
  1. 1.INSERM U-248Faculté de Médecine Lariboisière - Saint-LouisParisFrance

Personalised recommendations