SDC25, a New Gene of Saccharomyces Cerevisiae, Homologous to CDC25: The 3′-Part of SDC25 Encodes an Exchange Factor Able to Act on ras Proteins

  • Faten Damak
  • Emmanuelle Boy-Marcotte
  • Pranvera Ikonomi
  • Michel Jacquet
Part of the NATO ASI Series book series (NSSA, volume 220)


Ras genes were first described as the transforming genes of the Kirsten and Harvey oncogenic retroviruses. They belong to a family of ubiquitous eucaryotic genes involved in growth control and in cell differentiation, ras gene products are GTP-binding proteins with an intrinsic GTPase activity. They activate their effector when bound to GTP but not when bound to GDP (Barbacid 1987). In Saccharomyces cerevisiae, the RAS1 and RAS2 genes are closely related to the ras genes of higher eucaryotic organisms (Dhar, Nieto et al. 1984; Powers, Kataoka et al. 1984) and their products activate adenylate cyclase encoded by the CYR1 gene (allelic to CDC35) (Broek, Samiy et al. 1985). As a result of this activation, cyclic AMP stimulates the cAMP-dependent protein kinase, whose regulatory subunit is encoded by the BCY1 gene (Toda, Cameron et al. 1987a). Three genes TPK1, TPK2 and TPK3 encode interchangeable catalytic subunits (Toda, Cameron et al. 1987b). The cAMP-dependent protein kinase pathway is essential for the cell division cycle since cAMP is required for the G1/S transition (Matsumoto, Uno et al. 1983a). This pathway relays also nutritional information which controls different processes such as carbohydrate storage (Martegani, Vanoni et al. 1986), sporulation (Iida and Yahara 1984) and a G1/G0 switch (Boy-Marcotte, Garreau et al. 1987).


Saccharomyces Cerevisiae Adenylate Cyclase Multicopy Plasmid CDC25 Gene Intrinsic GTPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbacid, M. (1987). “ras genes.” Ann. Rev. Biochem., 56: 779–827.PubMedCrossRefGoogle Scholar
  2. Boy-Marcotte, E., F. Damak, J. Camonis, H. Garreau and M. Jacquet. (1989). “The C-terminal part of a gene partially homologous to CDC25 gene suppresses the cdc25–5 mutation in Saccharomyces cerevisiae” Gene. 77: 21–30.PubMedCrossRefGoogle Scholar
  3. Boy-Marcotte, E., H. Garreau and M. Jacquet. (1987). “Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability in Saccharomyces cerevisiae.” Yeast. 3: 85–93.PubMedCrossRefGoogle Scholar
  4. Broek, D., N. Samiy, O. Fasano, A. Fujiyama, F. Tamanoi, J. Northup and M. Wigler. (1985). “Differential activation of yeast adenylate by wild-type and mutant RAS proteins.” Cell. 41: 763–769.PubMedCrossRefGoogle Scholar
  5. Broek, D., T. Toda, T. Michaeli, L. Levin, C. Birchmeier, M. Zoller, S. Powers and M. Wigler. (1987). “The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway.” Cell. 48: 789–799.PubMedCrossRefGoogle Scholar
  6. Camonis, J. H. and M. Jacquet. (1988). “A new RAS mutation that suppresses the CDC25 gene requirement for growth of Saccharomyces cerevisiae” Mol. Cell. Biol. 8: 2980–2983.PubMedGoogle Scholar
  7. Camonis, J. H., M. Kalekine, B. Gondré, H. Garreau, E. Boy-Marcotte and M. Jacquet. (1986). “Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae.” EMBO J. 5: 375–380.PubMedGoogle Scholar
  8. Cohen, P. (1985). “The role of protein phosphorylation in the hormonal control of enzyme activity.” Eur. J. Biochem. 151: 439–448.PubMedCrossRefGoogle Scholar
  9. Créchet, J. B., P. Poullet, J. Camonis, M. Jacquet and A. Parmeggiani. (1990a). “Different kinetic properties of the two mutants RAS2ilel52 and RAS2vall9 that suppress the CDC25 requirement in RAS/adenylatecyclase pathway in S. cerevisiae.” J. Biol. Chem. 265: 1563–1568.PubMedGoogle Scholar
  10. Créchet, J. B., P. Poullet, M. Mistou, A. Parmeggiani, J. Camonis, E. Boy-Marcotte, F. Damak and M. Jacquet. (1990b). “Enhancement of the GDP-GTP exchange of ras proteins by the carboxyl-terminal domain of SCD25.” Science. 248: 866–868.PubMedCrossRefGoogle Scholar
  11. Damak, F., E. Boy-Marcotte, D. Le-Roscouet, R. Guilbaud and M. Jacquet. (1991). “SDC25, a CDC25-like gene which contains a Ras-activating domain and is a dispensable gene of Saccharomyces cerevisiae.” Mol. Cell. Biol. 11: 202–212.PubMedGoogle Scholar
  12. Daniel, J. (1986). “The CDC25 “Start” gene of Saccharomyces cerevisiae: sequencing of the active C-terminal fragment and regional homologies with rhodopsin and cytochrome P450.” Curr.Genet. 10: 879–885.PubMedCrossRefGoogle Scholar
  13. Daniel, J. and G. Simchen. (1986). “Clones from two different genomic regions complement the cdc25 start mutation of Saccharomyces cerevisiae.” Curr.Genet. 10: 643–646.PubMedCrossRefGoogle Scholar
  14. Dhar, R., A. Nieto, R. Koller, D. Defeo-Jones and E. Scolnick. (1984). “Nucleotide sequence of two ras-related genes isolated from the yeast Saccharomyces cerevisiae.” Nucl. Acids Res. 12: 3611–3618.PubMedCrossRefGoogle Scholar
  15. Drubin, D. G., J. Mulholland, Z. Zhu and D. Botstein. (1990). “Homology of yeast actin binding protein to signal transduction proteins and myosin-I.” Nature (London). 343: 288–290.CrossRefGoogle Scholar
  16. Garreau, H., J. H. Camonis, C. Guitton and M. Jacquet. (1990). “The Saccharomyces cerevisiae CDC25 gene product is a 180 kDa polypeptide and is associated with a membrane fraction.” FEBS. 269: 53–59.CrossRefGoogle Scholar
  17. Hughes, D. A., Y. Fukui and M. Yamamoto. (1990). “Homologous activators of ras in fission and budding yeast.” Nature. 344: 355–357.PubMedCrossRefGoogle Scholar
  18. Iida, H. and I. Yahara. (1984). “Specific early-Gl blocks accompanied with stringent response in Saccharomyces cerevisiae lead to growth arrest in resting state similar to the GO of higher eucaryotes.” J. Cell Biol. 98: 1185–1193.PubMedCrossRefGoogle Scholar
  19. Jackson, P. and D. Baltimore. (1989). “N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl.” EMBO J. 8: 449–456.PubMedGoogle Scholar
  20. Jones, S., M. Vignais and J. R. Broach. (1991). “The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to ras.” Mol. Cell. Biol. 11: 2641–2646.PubMedGoogle Scholar
  21. Jung, G., C. L. Saxe III, A. R. Kimmel and J. A. Hammer III. (1989). “Dictyostelium discoideum contains a gene encoding a myosin I heavy chain.” Proc. Natl. Acad. Sci. USA. 86: 6186–6190.PubMedCrossRefGoogle Scholar
  22. Kataoka, T., S. Powers, C. McGill, O. Fasano, J. Strathern, J. Broach and M. Wigler. (1984). “Genetic analysis of yeast Saccharomyces cerevisiae RAS1 and RAS2 genes.” Cell. 37: 437–446.PubMedCrossRefGoogle Scholar
  23. Kato, J. Y., T. Takeya, C. Grandori, H. Iba, J. B. Levy and H. Hanafusa. (1986). “Amino acid substitutions sufficient to convert the non transforming p60c-src protein to a transforming protein.” Mol. Cell. Biol. 6: 4155–4160.PubMedGoogle Scholar
  24. Martegani, E., M. D. Baroni, G. Frascotti and L. Alberghina. (1986). “Molecular cloning and transcriptional analysis of the start gene CDC25 of Saccharomyces cerevisiaer” EMBO J. 5: 2363–2369.PubMedGoogle Scholar
  25. Martegani, E., M. Vanoni and M. Baroni. (1986). “Macromolecular syntheses in the cell cycle mutant cdc25 of budding yeast.” Eur. J. Biochem. 144: 205–210.CrossRefGoogle Scholar
  26. Matsumoto, K., I. Uno and T. Ishikawa. (1983a). “Control of the cell division in Saccharomyces cerevisiae defective in adenylate cyclase and cAMP-dependent protein kinase.” Exp. Cell Res. 146: 151–161.PubMedCrossRefGoogle Scholar
  27. Nikawa, J.-L, P. Sass and M. Wigler. (1987). “Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae.” Mol. Cell. Biol. 7: 2629–2636.Google Scholar
  28. Pompon, D. and A. Nicolas. (1989). “Protein engineering by cDNA recombination in yeasts: shuffling of mammalian cytochrome P-450 functions.” Gene. 83: 15–24.PubMedCrossRefGoogle Scholar
  29. Powers, S., T. Kataoka, O. Fasano, M. Goldfarb, J. B. Strathern, J. Broach and M. Wigler. (1984). “Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins.” Cell. 36: 36: 607–612.PubMedCrossRefGoogle Scholar
  30. Rey, I., F. Schweighoffer, I. Barlat, J. Camonis, E. Boy-Marcotte, R. Guilbaud, M. Jacquet and B. Tocqué. (1990). “The COOH-domain of the product of the Saccharomyces cerevisiae SDC25 gene elicits activation of p21 ras proteins in mammalian cells.” Oncogene.Google Scholar
  31. Tanaka, K., M. Nakafuku, T. Satoh, M. S. Marshall, J. B. Gibbs, K. Matsumoto, Y. Kaziro and A. Tohe. (1990). “5. cerevisiae genes IRAI et IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein.” Cell. 60: 803–807.PubMedCrossRefGoogle Scholar
  32. Tatchell, K., D. T. Chaleff, D. DeFeo-Jones and E. M. Scolnick. (1984). “Requirement of either of a pair of ras related genes of Saccharomyces cerevisiae for spore viability.” Nature. 309: 523–527.PubMedCrossRefGoogle Scholar
  33. Toda, T., S. Cameron, P. Sass, M. Zoller, J. D. Scott, B. McMullen, M. Hurwitz, E. B. Krebs and M. Wigler. (1987a). “Cloning and characterization of BCY1, a locus encoding a regulatory subunit of cyclic AMP-dependent protein in Saccharomyces cerevisiaer” Mol. Cell. Biol. 7: 1371–1377.PubMedGoogle Scholar
  34. Toda, T., S. Cameron, P. Sass, M. Zoller and M. Wigler. (1987b). “Three different genes in S. cerevisiae encode the catalytic subunit of the cyclic AMP-dependent protein kinase.” Cell. 50: 277–287.PubMedCrossRefGoogle Scholar
  35. Vanoni, M., M. Vavassori, G. Frascotti, E. Martegani and L. Albefghina. (1990). “Overexpression of the CDC25 gene, an upstream element of the RAS/Adenylyl cyclase pathway in Saccharomyces cerevisiae, allows immunological identification and characterization of its gene product.” Boichem. Biophys. Res. Commun. 172: 61–69.CrossRefGoogle Scholar
  36. West, M., H. Kung and T. Kamata. (1990). “A novel membrane factor stimulates guanine nucleotide exchange reaction of ras proteins.” FEBS Lett. 259: 245–248.PubMedCrossRefGoogle Scholar
  37. Wolfman, A. and I. G. Macara. (1990). “A cytosolic protein catalyzes the release of GDP from p21ras.” Science. 248: 67–69.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Faten Damak
    • 1
  • Emmanuelle Boy-Marcotte
    • 1
  • Pranvera Ikonomi
    • 1
  • Michel Jacquet
    • 1
  1. 1.Groupe Information Génétique et DéveloppementUniversité Paris-SudOrsay CédexFrance

Personalised recommendations