The Effect of H-ras and C-myc Oncogene Transfection on the Response of Lung Epithelial Cells to Growth Factors and Cytotoxic Drugs

  • D. J. Kerr
  • J. A. Plumb
  • G. C. Wishart
  • M. Z. Khan
  • R. I. Freshney
  • D. A. Spandidos
Part of the NATO ASI Series book series (NSSA, volume 220)

Abstract

Clinical applications consequent upon elucidation of the role of oncogenes in contributing to the malignant cellular phenotype have mainly focussed on refinement of existing prognostic models for patient survival. Current research on breast cancer has shown a relationship between amplification of the c-erbB-2 or Her-2/neu oncogenes and disease progression and patient survival (Slamon et al, 1987). Similarly, amplification of the N-myc oncogene was found consistently in patients with advanced state neuroblastoma which was relatively resistant to chemotherapy (Schwab et al, 1984). The association between oncogene expression and prognosis could be due to two related variables: oncogene activation could be associated with a particularly aggressive malignant phenotype, e.g. they could confer metastability; or the oncogenes could confer cellular drug resistance to conventional chemotherapy resulting in a tumour refractory to standard therapy. A number of in vitro studies have indicated that oncogene transfection of immortalised cells can result in relative resistance to a number of antineoplastic drugs, including cisplatin (Sklar 1988).

Keywords

Bromide Glycine Dimethyl Trypsin Doxorubicin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, W.T. (1989). Unnkotting the complexities of multidrug resistance: the involvement of DNA topoisomerases in drug action and resistance. Journal. Natl. Can. Inst., 81:83.CrossRefGoogle Scholar
  2. Gottesman, M.M. & Pastan, I. (1988). Resistance to multiple chemotherapeutic agents in human cancer cells. TIPS Reviews, 9:54–58.Google Scholar
  3. Graham, F.L. & Van der Eb, A.J. (1973). A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology., 52:456. PubMedCrossRefGoogle Scholar
  4. Kerr, D.J., Plumb, J.A., Freshney, R.I., Khan, M.Z. & Spandidos, D.A. (1991). The effect of H-ras and c-myc oncogene transfection on response of mink lung epithelial cells to growth factors and cytotoxic drugs. Anticancer Res.,11:1349–1352 PubMedGoogle Scholar
  5. Khan, M.Z., Spandidos, D.A., McNicol, A.M., Lang, J.C., Kerr, D.J., DeRidder, L. & Freshney, R.I. (1991). Oncogene transfection of mink lung cells: effect on growth characteristics in vitro and in vivo. Anticancer Res.,11;1343–1348 PubMedGoogle Scholar
  6. Lu, Y., Han, J. & Scanlon, K.J. (1988). Biochemical and molecular properties of cisplatin resistance A27 80 cells growth in folinic acid. J. Biol. Chem., 263:4891–4894.PubMedGoogle Scholar
  7. Plumb, J.A., Milroy, R. & Kaye, S.B. (1989). Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazoiium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res., 49:4435–3330.PubMedGoogle Scholar
  8. Scanlon, K.J., Lu, Y., Kashani-Sabet, M., Ma, J. & Newman, E. (1988). Mechanisms for cisplatin-FUra synergism and cisplatin resistance in human ovarian carcinoma cells both in vitro and in vivo. In: Y. Rustum and J. McGuire, Eds., 244, Plenum Press, Inc., New York, pp131–139. Google Scholar
  9. Scanlon, K.J. & Kashani-Sabet, M. (1988). Elevated expression of thymidine synthase cycle genes in cisplatin-resistant A2780 cells. Proc. Natl. Acad. Sci. USA., 85:650–653.PubMedCrossRefGoogle Scholar
  10. Scanlon, K.J., Kashani-Sabet, M., Miyachi, H., Sowers, L.C. & Ross, J. (1989). Molecular baiss baiss of cisplatin resistance in human human carcinoma: model systems and patients. Anticancer Res., 9B:1301–1312 Google Scholar
  11. Schwab, M., Ellison, J., Busch, M., Roseran, W., Varmus, H.E. & Bishop J.M. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contrib ute to malignant progression of neuroblastoma. Proc. Natl. Acad. Sci. 81:4940–4944.Google Scholar
  12. Sklar, M.D. (1988). Increased resistance to cis-diamminedichloroplatinum (II) in NIH 3T3 cells transformed by ras oncogenes. Cancer Res., 48:793–797.PubMedGoogle Scholar
  13. Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A. & McGuire, W.K.L. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235:177–182.PubMedCrossRefGoogle Scholar
  14. Spandidos, D.A. (1985). Mechanism of carcinogenesis: the role of oncogenes, transcriptional enhancers and growth factors. Anticancer Res., 5:485.PubMedGoogle Scholar
  15. Spandidos, D.A. & Wikie, N.M. (1984a). Expression of exogenous DNA in mammalian cells. In: Hames, B.D., Higginqs, S.J., Eds, IRL Press Oxford, pp1.Google Scholar
  16. Spandidos, D.A. & Wilkie, N.M. (1984b). Malignant transformation of early passage rodent cells by a single single mutated human oncogene. Nature, 310:469.PubMedCrossRefGoogle Scholar
  17. Stern, D.F., Roberts, A.B., Roche, N.S., Sporn, M.B. & Weinberg, R.A. (1986). Differential responsiveness of myc and ras-transfected cells by epidermal growth factor. Mol. Cell. Biol. 6:870–877.PubMedGoogle Scholar
  18. Woessner, R.D., Chung, T.D.Y., Hofman, G.A., Mattern, M.R., Mirabelli, C.K., Drake, F.H. & Johnson, R.K. (1990). Differences between normal and ras-transformed NIH-373 cells in expression of the 17 0kD and 180kD forms of topoisomerase II. Cancer Res., 50:2901–2908.PubMedGoogle Scholar
  19. Wishart, G.W., Plumb, J.A., Spandidos, D.A. & Kerr, D.J. (1991). H-ras transfection in mink lung epithelial cells may induce “atypical” multi drug resistance. Eur. J Cancer, in press.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • D. J. Kerr
    • 1
  • J. A. Plumb
    • 1
  • G. C. Wishart
    • 1
  • M. Z. Khan
    • 1
  • R. I. Freshney
    • 1
  • D. A. Spandidos
    • 2
  1. 1.CRC Dept of Medical OncologyBearsden, GlasgowUK
  2. 2.Institute of Biological Research and BiotechnologyNational Hellenic Research FoundationAthensGreece

Personalised recommendations