The YPT Gene Family of Schizosaccharomyces Pombe

  • John Armstrong
  • Erica Fawell
  • Sally Hook
  • Alison Pidoux
  • Mark Craighead
Part of the NATO ASI Series book series (NSSA, volume 220)


The ypt/rab family is a group of related proteins within the ras superfamily of small GTP-binding proteins. The original members of the group, Ypt1 and Sec4, were identified in the budding yeast Saccharomyces cerevisiae, where they appear to function at different stages of the secretory pathway, namely traffic from the endoplasmic reticulum to the Golgi complex and from the Golgi complex to the plasma membrane respectively 1,2. From these observations arose the hypothesis that the protein family may play a general role in eukaryotic membrane traffic, with a different member of the family determining the specificity of fusion of each class of vesicle mediating transport between the different compartments in the cell2. Consistent with this hypothesis, members of the family (known as rab proteins) have been identified in mammalian cells3,4,5 and in several cases the proteins have been shown to localise to different intracellular compartments6,7,8. In two cases the proteins localise to distinct populations of endosomes6, suggesting that the rab family is involved in endocytic as well as exocytic processes. Indeed, convincing evidence has been provided that the rab5 protein is directly involved in endosome fusion9. Except where such cell-free assays are available, however, it is difficult to determine the function of the mammalian proteins, since the genetic methods used in budding yeast are not generally applicable.


Fission Yeast Golgi Complex Schizosaccharomyces Pombe Keyhole Limpet Haemocyanin Tetramethyl Ammonium Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Segev,N., Mulholland,J. and Botstein,D. (1988) Cell 52, 915–924.PubMedCrossRefGoogle Scholar
  2. 2.
    Salminen,A. and Novick,P.J. (1987) Cell 49, 527.PubMedCrossRefGoogle Scholar
  3. 3.
    Touchot,N., Chardin,P. and Tavitian,A. (1987) Proc.Natl.Acad.Sci.USA 84, 8210.PubMedCrossRefGoogle Scholar
  4. 4.
    Zahraoui,A., Touchot,N., Chardin,P. and Tavitian,A. (1989) J.Biol.Chem. 264, 12394.PubMedGoogle Scholar
  5. 5.
    Chavrier,P., Vigneron,M., Simons,K. and Zerial,M. (1990) Molec. Cell. Biol. 10, 6578.PubMedGoogle Scholar
  6. 6.
    Chavrier, P., Parton, R.G., Hauri, H.P., Simons, K. and Zerial, M. (1990) Cell, 62, 317.PubMedCrossRefGoogle Scholar
  7. 7.
    Goud, B., Zahraoui, A., Tavitian, A. and Saraste, J. (1990) Nature, 345, 553.PubMedCrossRefGoogle Scholar
  8. 8.
    Fischer v. Mollard, G., Mignery, G.A., Baumert, M., Perin, M.S., Hanson, T.J., Burger, P.M., Jahn, R. and Sudhof, T.C. (1990) Proc. Natl. Acad. Sci. USA, 87, 1988.CrossRefGoogle Scholar
  9. 9.
    Gorvel, J.-P., Chavrier, P., Zerial, M. and Gruenberg, J. (1991) Cell, 64, 915.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, M. and Nurse, P. (1987) Nature 327, 31.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith, D.G., and Svoboda, A. (1972). Microbios, 5, 177.PubMedGoogle Scholar
  12. 12.
    Moreno, S., Ruiz, T., Sanchez, Y., Villanueva, J.R., and Rodriguez, L. (1985). Arch. Microbiol., 142, 370.PubMedCrossRefGoogle Scholar
  13. 13.
    Hengst, L., Lehmeier, T., and Gallwitz, D. (1990). EMBO J., 9, 1949.PubMedGoogle Scholar
  14. 14.
    Wood, W.I., Gitschier, J., Lasky, L.A. and Lawn, R.M. (1985) Proc.Natl.Acad.Sci.USA 82, 1585.PubMedCrossRefGoogle Scholar
  15. 15.
    Church, G.M. and Gilbert, W. (1984) Proc.Natl.Acad.Sci.USA 81, 1991.PubMedCrossRefGoogle Scholar
  16. 16.
    Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  17. 17.
    Tabor, S. and Richardson, C.C. (1987) Proc.Natl.Acad.Sci.USA 84, 4767.PubMedCrossRefGoogle Scholar
  18. 18.
    Kaufer, N.F., Simanis, V. and Nurse, P. (1985). Nature (London), 318, 78.CrossRefGoogle Scholar
  19. 19.
    Green, N., Alexander, H., Olson, A., Alexander, S., Shinnick, T.M., Sutcliffe, J.G. and Lerner, R.A. (1982) Cell, 28, 477.PubMedCrossRefGoogle Scholar
  20. 20.
    Maundrell, K. (1990) J. Biol. Chem., 19, 10857.Google Scholar
  21. 21.
    Moreno, S., Klar, A., and Nurse, P. (1990). In Methods in Enzymology (ed. C. Guthrie and G.R. Fink.), Vol.194, pp.795–823. Academic Press, London.Google Scholar
  22. 22.
    Broker, M. (1987). Biotechniques, 5, 516.Google Scholar
  23. 23.
    Hagan, I.M., and Hyams, J.S. (1988). J. Cell Sci., 89, 343.PubMedGoogle Scholar
  24. 24.
    Nilsson, T., Jackson, M. and Peterson, P.A. (1989) Cell, 58, 707.PubMedCrossRefGoogle Scholar
  25. 25.
    Ash, J.F., Louvard, D. and Singer, S.J. (1977) Proc. Natl Acad. Sci. USA, 74, 5584.PubMedCrossRefGoogle Scholar
  26. 26.
    Fawell,E., Hook,S. and Armstrong,J. (1989) Nucl. Acids Res. 17, 4373.PubMedCrossRefGoogle Scholar
  27. 27.
    Miyake, S., and Yamamoto, M. (1990). EMBO J., 9, 1417.PubMedGoogle Scholar
  28. 28.
    Haubruck,H., Disela,C., Wagner,P. and Gallwitz,D. (1987) EMBO J. 6, 4049.PubMedGoogle Scholar
  29. 29.
    Gallwitz, D., Donath, C. and Sander, C. (1983) Nature, 306, 704.PubMedCrossRefGoogle Scholar
  30. 30.
    Fawell, E., Hook, S., Sweet, D., and Armstrong, J. (1990). Nucl. Acids Res. 18, 4264.PubMedCrossRefGoogle Scholar
  31. 31.
    Haubruck, H., Engelke, U., Mertins, P., and Gallwitz, D. (1990). EMBO J., 9, 1957.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • John Armstrong
    • 1
  • Erica Fawell
    • 1
  • Sally Hook
    • 1
  • Alison Pidoux
    • 1
  • Mark Craighead
    • 1
  1. 1.Membrane Molecular Biology LaboratoryImperial Cancer Research FundLondonUK

Personalised recommendations