Localization of rab Proteins

  • Philippe Chavrier
  • Jean-Pierre Gorvel
  • Kai Simons
  • Jean Gruenberg
  • Marino Zerial
Part of the NATO ASI Series book series (NSSA, volume 220)


A number of in vitro and in vivo studies have shown that the large superfamily of Ras-related low molecular weight GTP-binding proteins includes proteins which are involved in the control of membrane traffic. In the yeast Saccharomyces cerevisiae, the SEC4 gene encodes a 23 Kd ras-related GTP-binding protein involved in the regulation of vesicular traffic from the Golgi apparatus to the plasma membrane. The protein is found associated with both the cytoplasmic surface of the plasma membrane and secretory vesicles (Salminen and Novick, 1987; Goud et al., 1988). Temperature-sensitive and dominant SEC4 mutants lead to a block in transport from the Golgi apparatus and accumulation of post-Golgi secretory vesicles (Salminen and Novick, 1987; Walworth et al., 1989). The YPT1 gene product is a 23 Kd GTP-binding protein (Gallwitz et al., 1983) which functions at an earlier step of the secretory pathway, from the ER to or within the Golgi apparatus (Schmitt et al., 1986; 1988; Segev and Botstein, 1987; Segev et al., 1988; Baker et al, 1990).


Golgi Apparatus Secretory Vesicle Early Endosome Late Endosome Membrane Traffic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adari, H., Lowy, D.R., Willumsen, B.M., Der, C.J. and McCormick, F., 1988, Guanosine triphosphatase activating protein (GAP) interacts with the p21ras effector binding domain, Science, 240:518.PubMedCrossRefGoogle Scholar
  2. Baker, D., Wuestehube, L., Schekman, R., Botstein, D., and Segev, N., 1990, GTP-binding Ypt1 protein and Ca2+ function independently in a cell-free protein transport reaction. Proc. Natl. Acad. Sci. USA, 87:355.PubMedCrossRefGoogle Scholar
  3. Barbacid, M., 1987, Ras Genes, Ann. Rev. Biochem., 56:779.PubMedCrossRefGoogle Scholar
  4. Becker, J., Tan, T.J., Trepte, H.-H and Gallwitz, D., 1991, Mutational analysis of the putative effector domain of the GTP-binding Yptl protein in yeast suggests specific regulation by a novel GAP activity. EMBO J., 10:785.PubMedGoogle Scholar
  5. Beckers, C.J.M. and Balch, W.E., 1989, Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and the Golgi apparatus, J. Cell Biol., 108:1245.PubMedCrossRefGoogle Scholar
  6. Bomsel, M., Parton, R., Kuznetsov, S.A., Schroer, T.A., and Gruenberg, J., 1990, Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells, Cell, 62:719.PubMedCrossRefGoogle Scholar
  7. Bourne, H.R., 1988, Do GTPases direct membrane traffic in secretion? Cell, 53:669.PubMedCrossRefGoogle Scholar
  8. Bourne, H.R., Sanders, D.A., and McCormick, F., 1991, The GTPase superfamily: conserved structure and molecular mechanism, Nature, 349:117.PubMedCrossRefGoogle Scholar
  9. Bucci, C., Frunzio, R., Chiariotti, L., Brown, A.L., Rechler, M.M. and Bruni, C.B., 1988, A new member of the ras gene superfamily identified in a rat liver cell line, Nucl. Acids Res., 16:9979.PubMedCrossRefGoogle Scholar
  10. Cales, C., Hancock, J.F., Marshall, C.J. and Hall, A., 1988, The cytoplasmic protein GAP is implicated as a target for regulation by the ras gene product, Nature, 332:548.PubMedCrossRefGoogle Scholar
  11. Chardin, P., and Tavitian, A., 1986, The ral gene: a new ras related gene isolated by the use of a synthetic probe, EMBO J., 5:2203.PubMedGoogle Scholar
  12. Chavrier, P., Parton, R.G., Hauri, H.P., Simons, K. and Zerial, M., 1990a, Localization of low molecular weight GTP-binding proteins to exocytic and endocytic compartments, Cell, 62:317.PubMedCrossRefGoogle Scholar
  13. Chavrier, P., Vingron, M., Sander, C., Simons, K. and Zerial, M., 1990b, Molecular cloning of YPTq/SEC4-related cDNAs from an epithelial cell line, Mol. Cell. Biol., 10:6578.PubMedGoogle Scholar
  14. Darchen, F., Zahraoui, A., Hammel, F., Monteils, M.-P., Tavitian, A., and Scherman, D., 1990, Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules, Proc. Natl. Acad. Sci. USA, 87:5692.PubMedCrossRefGoogle Scholar
  15. Deschenes, R.J., and Broach, J.R., 1987, Fatty acylation is important but not essential for Saccharomyces cerevisiae RAS function, Mol. Cell. Biol., 7:2344.PubMedGoogle Scholar
  16. de Vos, A., Tong, L., Milburn, M.V., Matias, P.M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E., and Kim, S.-H., 1988, Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21, Science, 239:888.PubMedCrossRefGoogle Scholar
  17. Didsbury, J., Weber, R.F., Bokoch, G.M., Evans, T., and Snyderman, R., 1989, Rac, a novel ras-related family of proteins that are Botulinum Toxin substrates., J. Biol. Chem., 264:16378.PubMedGoogle Scholar
  18. Fawell, E., Hook, S., Sweet, D. and Armstrong, J., 1990, Novel YPT1-related genes from Schizosaccharomyces pombe, Nucl. Acids Res. 18:4264.PubMedCrossRefGoogle Scholar
  19. Fisher v., Mollard, G.F., Mignery, G.A., Baumert, M., Perin, M.S., Hanson, T.J., Burger, P.M., Jahn, R., and Sudhof, T., 1990, Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles, Proc. Natl. Acad. Sci. USA, 87:1988.CrossRefGoogle Scholar
  20. Fuerst, T.R., Niles, E.G., Studier, F.W. and Moss, B., 1986, Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase, Proc. Natl. Acad. Sci USA, 83:8122.PubMedCrossRefGoogle Scholar
  21. Gallwitz, D., Donath, C., and Sander, C., 1983, A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product, Nature, 306:704.PubMedCrossRefGoogle Scholar
  22. Goda, Y., and Pfeffer, S.R., 1988, Selective recycling of the mannose 6-phosphate/IGFII receptor to the trans Golgi network in vitro, Cell, 55:309.PubMedCrossRefGoogle Scholar
  23. Gorvel, J.P., Chavrier, P., Zerial, M. and Gruenberg, J., 1991, Rab5 controls early endosome fusion in vitro, Cell, 64:915.PubMedCrossRefGoogle Scholar
  24. Goud, B., Salminen, A., Walworth, N.C., and Novick, P.J., 1988, A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast, Cell, 53:753.PubMedCrossRefGoogle Scholar
  25. Goud, B., Zahraoui, A., Tavitian, A., and Saraste, J., 1990, Small GTP-binding protein associated with Golgi cisternae, Nature, 345:553.PubMedCrossRefGoogle Scholar
  26. Gutierrez, L., Magee, A.I., Marshall, C.J. and Hancock, J.F., 1989, Post-translational processing of p21ras is two-step and involves carboxy-methylation and carboxy-terminal proteolysis EMBO J., 8:1093.PubMedGoogle Scholar
  27. Hancock, J.F., Magee, A.I., Childs, J.E. and Marshall, C.J., 1989, All ras proteins are polyisoprenilated but only some are palmitoylated, Cell, 57:1167.PubMedCrossRefGoogle Scholar
  28. Hancock, J.F., Paterson, H. and Marshall, C.J., 1990, A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane, Cell 63:133.PubMedCrossRefGoogle Scholar
  29. Haubruck, H., Disela, C., Wagner, P., and Gallwitz, D., 1987, The ras-related ypt protein is an ubiquitous eukaryotic protein: isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene, EMBO J., 6:4049.PubMedGoogle Scholar
  30. Haubruck, H., Prange, R., Vorgias, C., and Gallwitz, D., 1989, The ras-related mouse yptl protein can functionally replace the YPT1 gene product in yeast, EMBO J., 8:1427.PubMedGoogle Scholar
  31. Hopkins, C.R., 1983, Intracellular Routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells, Cell, 35:321.PubMedCrossRefGoogle Scholar
  32. Kawata, M., Farnsworth, C.C., Yoshida, Y., Gelb, M.H., Glomset, J.A., and Takai, Y., 1990, Posttranslationally processed structure of the human platelet protein smg p21B: Evidence for geranylgeranylation and carboxyl methylation of the C-terminal cysteine, Proc. Natl. Acad. Sci. USA, 87:8960.PubMedCrossRefGoogle Scholar
  33. Matsui, Y., Kikuchi, A., Kondo, J., Hishida, T., Teranishi, Y., and Takai, Y., 1988, Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weight of 25,000 from bovine brain, J. Biol. Chem., 263:11071.PubMedGoogle Scholar
  34. Mayorga, L.S., Diaz, R., and Stahl, P.D., 1989, Regulatory role for GTP-binding proteins in endocytosis, Science, 244:1475.PubMedCrossRefGoogle Scholar
  35. Melançon, P., Glick, B.S., Malhotra, V., Weidman, P.J., Serafini, T., Gleason, M.L., Orci, L., and Rothman, J.E., 1987, Involvement of GTP-binding “G” proteins in transport through the Golgi stack, Cell, 51:1053.PubMedCrossRefGoogle Scholar
  36. Miyake, S. and Yamamoto, M., 1990, Identification of ras-related, YPT family genes in Scizosaccharomyces pombe, EMBO J., 9:1417.PubMedGoogle Scholar
  37. Mizoguchi, A., Kim, S., Ueda, T., Kikuchi, A., Yorifuji, H., Hirokawa, N., and Takai, Y., 1990, Localization and subcellular distribution of smg p25A, a ras p21-like GTP-binding protein, in rat brain, J. Biol. Chem., 265:11872.PubMedGoogle Scholar
  38. Molenaar, C.M.T., Prange, R., and Gallwitz, D., 1988, A carboxyl-terminal cysteine residue is required for palmitic acid binding and biological activity of the ras-related yeast Yptl protein, EMBO J., 7:971.PubMedGoogle Scholar
  39. Nakano, A., and Muramatsu, M., 1989, A novel GTP-binding protein, Sarlp, is involved in transport from the endoplasmic reticulum to the Golgi apparatus, J. Cell Biol., 109:2677.PubMedCrossRefGoogle Scholar
  40. Orci, L., Malhotra, V., Amherdt, M., Serafini, T., and Rothman, J.E., 1989, Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movements in the Golgi stack, Cell, 56:357.PubMedCrossRefGoogle Scholar
  41. Pai, E.F., Kabsch, W., Krengel, U., Holmes, K.C., John, J., and Wittinghofer, A., 1989, Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation, Nature, 341:209.PubMedCrossRefGoogle Scholar
  42. Polakis, P.G., Weber, R.F., Nevins, B., Didsbury, J.R., Evans, T., and Snyderman, R., 1989, Identification of the ral and racl gene products, low molecular mass GTP-binding proteins from human platelets, J. Biol. Chem., 264:16383.PubMedGoogle Scholar
  43. Rothman, J.E., and Orci, L., 1990, Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport, FASEB J., 4:1460.PubMedGoogle Scholar
  44. Ruohola, H., Kastan Kabcenell, A., and Ferro-Novick, S., 1988, Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: the acceptor Golgi compartment is defective in the sec23 mutant, J. Cell Biol., 107:1465.PubMedCrossRefGoogle Scholar
  45. Salminen, A., and Novick, P.J., 1987, A ras-like protein is required for a post-Golgi event in yeast scretion, Cell, 49:527.PubMedCrossRefGoogle Scholar
  46. Schmid, S.L., Fuchs, R., Male, P. and Mellman, I., Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes, Cell 52, 73–83 (1988).PubMedCrossRefGoogle Scholar
  47. Schmitt, H.D., Wagner, P., Pfaff, E. and Gallwitz, D., 1986, The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization, Cell, 47:401.PubMedCrossRefGoogle Scholar
  48. Schmitt, H.D., Puzicha, M., and Gallwitz, D., 1988, Study of a temperature-sensitive mutant of the ras-related YPT1 gene product in yeast suggests a role in the regulation of intracellular calcium, Cell, 53:635.PubMedCrossRefGoogle Scholar
  49. Schweizer, A., Fransen, J.A.M., Bachi, T., Ginsel, L., and Hauri, H.-P., 1988, Identification, by a monoclonal antibody, of a 53kD protein associated with a tubular-vesicular compartment at the cis-side of the Golgi apparatus, J. Cell Biol., 107:1643.PubMedCrossRefGoogle Scholar
  50. Segev, N. and Botstein, D., 1987, The ras-like Yeast YPT1 gene is itself essential for growth, sporulation, and starvation response, Mol. Cell. Biol., 7:2367.PubMedGoogle Scholar
  51. Segev, N., Mulholland, J., and Botstein, D., 1988, The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery, Cell, 52:915.PubMedCrossRefGoogle Scholar
  52. Sewell, J.L., and Kahn, R.A., 1988, Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins, Proc. Natl. Acad. Sci. USA, 85:4620.PubMedCrossRefGoogle Scholar
  53. Stearns, T., Willingham, M.C., Botstein, D. and Kahn, R.A., 1990, ADP-ribosylation factor is functionally and physically associated with the Golgi complex, Proc. Natl. Acad. Sci. USA, 87:1234.CrossRefGoogle Scholar
  54. Tooze, S.A., Weiss, U. and Huttner, W.B., 1990, Requirement for GTP hydrolysis in the formation of secretory vesicles, Nature, 347:207.PubMedCrossRefGoogle Scholar
  55. Touchot, N., Chardin, P., and Tavitian, A., 1987, Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library, Proc. Natl. Acad. Sci. USA, 84:8210.PubMedCrossRefGoogle Scholar
  56. Tuomikoski, T., Felix, M-A., Dorée, M., and Gruenberg, J., 1989, The cell-cycle control protein kinase cdc2 inhibits endocytic vesicle fusion in vitro. Nature, 342: 942.PubMedCrossRefGoogle Scholar
  57. Walworth, N. C., Goud, B., Kastan Kabcenell, A., and Novick, P.J., 1989, Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic, EMBO J., 8:1685.PubMedGoogle Scholar
  58. Willumsen, B.M., Norris, K., Papageorge, A.G., Hubbert, N.L., and Lowy, D.R., 1984, Harvey murine sarcoma virus p21 ras protein: Biological and biochemical significance of the cysteine nearest the carboxy terminus, EMBO J., 3:2585.Google Scholar
  59. Yeramian, P., Chardin, P., Madaule, P. and Tavitian, A., 1987, Nucleotide sequence of human rho cDNA clone 12., Nucl. Acids Res., 15:1869.PubMedCrossRefGoogle Scholar
  60. Zahraoui, A., Touchot, N., Chardin, P., and Tavitian, A., 1989, The human Rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion, J. Biol. Cell., 264:12394.Google Scholar
  61. Zerial, M., Melancon, P., Schneider, C. and Garoff, H., 1986, The transmembrane segment of the human transferrin receptor functions as a signal peptide, EMBO J., 5:1543.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Philippe Chavrier
    • 1
  • Jean-Pierre Gorvel
    • 1
  • Kai Simons
    • 1
  • Jean Gruenberg
    • 1
  • Marino Zerial
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations