Skip to main content

The c-Ha-ras Oncogene Induces Increased Expression of β-Galactoside α-2,6-Sialyltransferase in Rat Fibroblast (FR3T3) Cells

  • Chapter
The Superfamily of ras-Related Genes

Abstract

Elucidation of the molecular and cellular changes that accompany malignant conversion of normal cell populations is central to the understanding of cancer. Cell surface carbohydrates display structural alterations concomitant with malignant transformation (1). Transformation by chemical mutagens as well as by oncogenic viruses results in changes in the size of N-linked and O-linked glycans (1, 2). The increased size of these carbohydrate structures has been attributed to multi-antennarisation and to increased sialylation (3). Multi-antennarisation has been well studied and, in particular, has been associated with increased GlcNAc(β1–6)Man(α1–6) branching of complex type oligosaccharides. This phenomenon is directly associated with elevated N-Acetylglucosaminyltransferase V activity (4). Several recent observations have suggested that increased expression of β-1,6- branched oligosaccharides may be required for tumor cell metastasis (5). Multi-antennarisation of N-linked glycans synthesized by transformed cells is widely accepted. Increased sialylation in these cells is not a general phenomenon but has nevertheless been associated with metastatic potential (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smets, L.A., and Van Beek, W.P., Carbohydrates of the tumor cell surface, Biochim. Biophys. Acta 738:237–249 (1984).

    PubMed  CAS  Google Scholar 

  2. Santer, U.V., and Glick, M.C., Partial structure of a membrane glycopeptide from virus-transformed hamster cell, Biochemistry 18:2533–2540 (1979).

    Article  PubMed  CAS  Google Scholar 

  3. Warren, L., Fuhrer, J.B., and Buck, C.A., Surface glycoproteins of normal and transformed cells: a difference determined by sialic acid and a growth-dependant sialyltransferase Proc. Natl. Acad. Sci. USA 69:1838–1842 (1972).

    Article  PubMed  CAS  Google Scholar 

  4. Dennis, J.W., Kosh, K., Bryce, D.M., and Breitman, M.L., Oncogenes conferring metastatic potential induce increased branching of Asn-liked oligosaccharides in Rat2 fibroblasts, Oncogene 4:853–860 (1989).

    PubMed  CAS  Google Scholar 

  5. Dennis, J.W., Laferté, S., Waghorne, C., Breitman, M.L., and Kerbel, R.S. β1–6 branching of Asn-linked oligosaccharides is directly associated with metastasis Science 236:582–585 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. Nicolson, G.L., Cancer metastasis — Organ colonization and the cell surface properties of malignant cells, Biochim. Biophys. Acta 695:113–176 (1982).

    PubMed  CAS  Google Scholar 

  7. Santos, E., Tronick, S.R., Aronson, S.A., Puciani, S., and Barbacid, M., T24 human bladder carcinoma oncogene is an activated form for the human homologous of BALB- and Harvey-MSV transforming genes, Nature 298:343–347 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. Forrester, K., Almoguera, C., Han, K., Grizzle, W.E., and Perucho, M., Detection of high incidence of K-ras oncogenes during human colon tumorigenesis, Nature 327:298–303(1987).

    Article  PubMed  CAS  Google Scholar 

  9. Mc Grath, J.P., Capon, DJ., Goeddel, D.V., and Levinson, A.D., Comparative biochemical properties of normal and activated human ras p21 protein, Nature 310:644–649 (1984).

    Article  CAS  Google Scholar 

  10. Mc Cormick, F., Ras GTPase activating protein: signal transmitter and signal terminator, Cell 56:5–8 (1989).

    Article  CAS  Google Scholar 

  11. Collard, J.G., Van Beek, W.P., Janssen, JW.G., and Schijen, J.F., Transfection by human oncogenes: concomitant induction of tumorigenesis and tumor-assiociated membrane alterations, Int. J.Cancer 35:207–214 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. Salomé, N., van Hille, B., Duponchel, N., Menguizzi, G., Cuzin, F., Rommelaere, J., and Cornelis, J.J., Sensitization of transformed rat cells to parvovirus MVMp is restricted to specific oncogenes, Oncogene 5:123–130 (1990).

    PubMed  Google Scholar 

  13. van Hille, B., Duponchel, N., Salomé N., Spruyt, N., Cotmore, S., Tattersall, P., Cornelis, J.J., and Rommelaere, J., Limitations to the expression of parvoviral nonstructural proteins may determine the extent of sensitization of EJ-ras-transformed rat cells to minute virus mice,Virology 171, 89–97 (1989).

    Article  PubMed  Google Scholar 

  14. Mousset, S., Cornelis, J., Spruyt, N., and Rommelaere, J., Transformation of established murine fibroblasts with an activated cellular Harvey-ras or the polyoma virus middle T gene increases cell permissiveness to parvovirus minute-virus-of-mice, Biochimie 6:951–955 (1986).

    Article  Google Scholar 

  15. Cazlaris, H., Le Marer, N., Laudet, V., Lagrou, C., Zhu, Q., Delannoy, P., and Montreuil, J., Modifications de la sialylation des cellules BHK 21/C13 après transfection in vitro par l’oncogène humain c-Ha-ras. C. R. Acad.Sci. Paris, 312, Série III:293–300 (1991).

    PubMed  CAS  Google Scholar 

  16. Lee, E.U., Roth, J., and Paulson, J.C., Alteration of terminal glycosylation on N-linked oligosaccharides of Chinese hamster ovary cells by expression of β-galactoside α2,6-sialyltransferase, J. Biol. Chem. 264:13848–13855 (1989).

    PubMed  CAS  Google Scholar 

  17. Paulson, J.C., and Colley, K.J., Glycosyltransferases: Structure, localization and control of cell type-specific glycosylation, J. Biol. Chem. 264:17615–17618 (1989).

    PubMed  CAS  Google Scholar 

  18. Shibuya, N., Goldstein I.J., Brockaert, W.F., Nsimba-Lubaki, M., Peeters B., and Peumans, W.J., The elderberry (Sambuccus nigra L) bark lectin recognizes the Neu5Ac(α2–6)Gal/GalNAc sequence Arch. Biochem. Biophys. 254:1–8 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. Weinstein J., Lee E.U., Mc Entee K., Lai P.H., and Paulson, J.C., Primary structure of β-galactoside α2,6-sialyltransferase, J. Biol. Chem. 262:17735–17743 (1987).

    PubMed  CAS  Google Scholar 

  20. Paulson, J.C., Weinstein, J., and Schauer, A., Tissue-specific expression of sialyltransferases, J. Biol. Chem. 264:10931–10934 (1989).

    PubMed  CAS  Google Scholar 

  21. Svensson, E.C., Soreghan, B., and Paulson, J.C., Organization of the ß-galactoside α2,6-sialyltransferase gene, J. Biol. Chem. 265:20863–20868 (1990).

    PubMed  CAS  Google Scholar 

  22. Joziasse, D.H., Schiphorst, W.E.C.M., Van den Eijnden, D.H., Van Kuik, J.A., Van Halbeek, H., and Vliegenthart, J.F.G., Branch specificity of bovine colostrum CMP-sialic acid: Gal(β1–4)GlcNAc-R α2,6-sialyltransferase, J Biol. Chem. 262:2025–2033 (1987).

    PubMed  CAS  Google Scholar 

  23. Colley, K.J., Ujita, L., Beverly, A., Browne, J.K., and Paulson, J.C., Conversion of a Golgi apparatus sialyltransferase to a secretory protein by replacement of NH2-terminal signal anchor with a signal peptide, J. Biol. Chem. 264:17619–17622 (1989).

    PubMed  CAS  Google Scholar 

  24. Bolscher, J.G.M., van der Bijl, M.M.W., Neefjes, J.J., Hall, A., Smets, L.A., and Ploegh, H.L., Ras (proto-oncogene) induces β-linked carbohydrate modification: temporal relationship with invasive potential, EMBO J. 7:3361–3368 (1988).

    PubMed  CAS  Google Scholar 

  25. Dall’Olio, F., Malagolini, N., Di Stefano, G., Ciambella, M., and Serafini-Cessi, F., α2,6 sialylation of N-acetyllactosaminic sequences in human colorectal cancer cell lines. Relationship with non-adherent growth, Int. J. Cancer 47:291–297 (1991).

    Article  PubMed  Google Scholar 

  26. Bresalier, R.S., Rockwell, R.W., Dahiya, R., Duh, Q., and Kim, Y.S., Cell surface sialoprotein alterations in metastatic murine colon cancer cell lines selected in an animal model for colon cancer metastasis, Cancer Res. 50:1299–1307 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Le Marer, N. et al. (1991). The c-Ha-ras Oncogene Induces Increased Expression of β-Galactoside α-2,6-Sialyltransferase in Rat Fibroblast (FR3T3) Cells. In: Spandidos, D.A. (eds) The Superfamily of ras-Related Genes. NATO ASI Series, vol 220. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6018-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6018-6_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6020-9

  • Online ISBN: 978-1-4684-6018-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics