Advertisement

Detection of N-ras Mutations in Acute Myeloid Leukemia

  • A. V. Todd
  • S. Yi
  • C. M. Ireland
  • H. J. Iland
Part of the NATO ASI Series book series (NSSA, volume 220)

Abstract

N-ras gene activation due to single base substitutions has been found in 20–40% of patients with acute myeloid leukemia (AML) depending on the technique used. Differential hybridization to allele specific oligonucleotide (ASO) probes detects mutations in about 22% of patients (1–6) whereas leukemic DNA assayed by NIH/3T3 transfection ± in vivo transformation in nude mice is associated with a mutation frequency of approximately 40% (7–11). We have developed a rapid screening method, termed allele specific restriction analysis (ASRA), for analysis of mutations at codons 12, 13 and 61 of the N-ras gene (12). A similar approach for the identification of Kirsten-ras gene mutations at codon 12 has also been reported (13,14). ASRA involves PCR amplification of DNA or RNA using a mismatched primer which introduces appropriately positioned base substitutions in N-ras and creates a restriction site provided the adjacent sequence is normal. Resistance of the amplified product to digestion indicates the presence of a mutation in the original template.

Keywords

Acute Myeloid Leukemia Acute Myeloid Leukemia Patient K562 Cell Line Single Base Substitution Allele Specific Oligonucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Farr, R.K. Saiki, H.A. Erlich, F. McCormick, C.J. Marshall, Analysis of ras gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc. Natl. Acad. Sci. USA 85:1629–1633 (1988).PubMedCrossRefGoogle Scholar
  2. 2.
    J.L. Bos, M. Verlaan-de Vries, A.J. van der Eb, J.W.G. Janssen, R. Delwel, B. Lowerberg, L.P. Colly, Mutations in N-ras predominate in acute myeloid leukemia. Blood 69:1237–1241 (1987).PubMedGoogle Scholar
  3. 3.
    H.P. Senn, Ch. Tran-Thang, A. Wodnar-Filipowicz, J. Jiricny, M. Fopp, A. Gratwohl, E. Signer, W. Weber, Ch. Moroni, Mutation analysis of the N-ras proto-oncogene in active and remission phase of human acute leukemias. Int. J. Cancer 41:59–64 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Mano, F. Ishikawa, H. Hirai, F. Takaku, Mutations of N-ras oncogene in myelodysplastic syndromes and leukemias detected by polymerase chain reaction. Jpn. J. Cancer Res. 80:102–106 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    C.R. Bartram, W-D. Ludwig, W. Hiddemann, J. Lyons, M. Buschle, J. Ritter, J. Harbott, A. Frohlich, J.W.G. Janssen, Acute myeloid leukemia: Analysis of ras gene mutations and clonality defined by polymorphic X-linked loci. Leukemia 3:247–256 (1989).PubMedGoogle Scholar
  6. 6.
    J.J. Yunis, A.J.M. Boot, M.G. Mayer, J.L. Bos, Mechanisms of ras mutation in myelodysplastic syndrome. Oncogene 4:609–614 (1989).PubMedGoogle Scholar
  7. 7.
    D. Toksoz, C.J. Farr, C.J. Marshall. ras gene activation in a minor proportion of the blast population in acute myeloid leukemia. Oncogene 1:409–413 (1987).PubMedGoogle Scholar
  8. 8.
    J.W.G. Janssen, A.C.M. Steenvoorden, J. Lyons, B. Anger, Jv. Bohlke, J.L. Bos, H. Seliger, C.R. Bartram, RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc. Natl. Acad. Sci. USA 84:9228–9232 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    S.W. Needleman, M.H. Kraus, S.K. Srivastava, P.H. Levine, S.A. Aaronson, High frequency of N-ras activation in acute myelogenous leukemia. Blood 67:753–757 (1986).PubMedGoogle Scholar
  10. 10.
    H. Hirai, J. Nishida, F. Takaka, Highly frequent detection of transforming genes in acute leukemias by transfection using in vivo selection assays. Biochem. Biophys. Res. Commun. 147:108–114 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    J.L. Bos, D. Toksoz, C.J. Marshall, M. Verlaan-de Vries, G.H. Veeneman, A.J. van der Eb, J.H. van Boom, J.W.G. Janssen, A.C.M. Steenvoorden, Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukemia. Nature 315:726–730 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    A.V. Todd, H.J. Hand, Rapid screening of mutant N-ras alleles by analysis of PCR-induced restricition sites: Allele specific restriction analysis (ASRA). Leukemia and Lymphoma 3:293–300 (1991).CrossRefGoogle Scholar
  13. 13.
    J. Wei, S.M. Kahn, J.G. Guillem, L. Shih-Hsin, I.B. Weinstein, Rapid detection of ras oncogenes in human tumors: application to colon, esophageal and gastric cancer. Oncogene 4:923–928 (1989).Google Scholar
  14. 14.
    A. Haliassos, J.C. Chomel, L. Tesson, M. Baudis, J. Kruh, J.C Kaplan, A. Kitzis, Modification of enzymatically amplified DNA for the detection of point mutations. Nucleic Acids Res. 17:3606 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    G.I. Bell, J.H. Karam, W.J. Rutter, Polymorphic DNA region adjacent to the 5’ end of the human insulin gene. Proc. Natl. Acad. Sci. USA 78:5759–5763 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Chomczynski, N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156–159 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    F. Ferre, F. Garduno. Preparation of crude cell extract suitable for amplification of RNA by the polymerase chain reaction. Nucleic Acids Res. 17:2141 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    A.V. Todd, C.M. Ireland, T.J. Radioff, H. Kronenberg, H.J. Hand, Analysis of N-ras gene mutations in acute myeloid leukemia by allele specific restriction analysis. Am. J. Hematol. (in press) (1991).Google Scholar
  19. 19.
    M. Verlaan-de Vries, M.E. Bogaard, H. van den Elst, J.H. van Boom, A.J. van der Eb, J.L. Bos, A dot blot screening procedure for mutated ras oncogenes using synthetic oligodeoxynucleotides. Gene 50:313–320 (1986).CrossRefGoogle Scholar
  20. 20.
    A.V. Todd, C.M. Ireland, H.J. Hand, Allele specific enrichment: A method for the detection of low level N-ras gene mutations in acute myeloid leukemia. Leukemia 5:160–161 (1991).PubMedGoogle Scholar
  21. 21.
    A. Neri, D.M. Knowles, A. Greco, F. McCormick, R. Dalla-Favera, Analysis of RAS oncogene mutations in human lymphoid malignancies. Proc. Natl. Acad. Sci. USA 85:9268–9272 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Bar-Eli, H. Ahuja, N. Gonzalez-Cadavid, A. Foti, M.J. Cline. Analysis of N-RAS Exon-1 mutations in myelodysplastic syndromes by polymerase chain reaction and direct sequencing. Blood 73:281–283 (1989).PubMedGoogle Scholar
  23. 23.
    J.W.G. Janssen and C.R. Bartram. Silent mutation at codon 15 interferes with the detection of a mutated N-ras codon 12 allele by oligonucleotide hybridization. Leukemia 3:235–235 (1989).PubMedGoogle Scholar
  24. 24.
    A. Haliassos, J.C. Chomel, S. Grandjouan, J. Kruh, J.C. Kaplan, A. Kitzis, Detection of minority point mutations by modified PCR technique: a new approach for a sensitive diagnosis of tumor-progression markers. Nucleic Acids Res. 17:8093–8099 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. V. Todd
    • 1
  • S. Yi
    • 1
  • C. M. Ireland
    • 2
  • H. J. Iland
    • 1
  1. 1.The Kanematsu LaboratoriesRoyal Prince Alfred HospitalCamperdownAustralia
  2. 2.The Children’s Leukaemia and Cancer Research UnitPrince of Wales HospitalRandwickAustralia

Personalised recommendations