Advertisement

ras and rap1 GTPases Mutated at Position 64

  • M. S. A. Nur-E-Kamal
  • H. Maruta
Part of the NATO ASI Series book series (NSSA, volume 220)

Abstract

Ras and Rap1 GTPases require Gly12, the effector domain (residues 32 to 40) and Ala 59 for activation by GAP1 and GAP3, respectively. The replacement of Gly12 by Val or Ala59 by Thr potentiates the Ras oncogenicity and Rap anti-oncogenicity. However, the mutations in the effector domain, in particular the replacement of Thr35 by Ala, abolishes both Ras oncogenicity and Rap anti-oncogenicity, indicating that the effector domains are involved in the interactions of these signal transducers with their targets as well as the GAPs. Here, we demonstrate that replacement of Tyr64 of the HaRas protein or Phe64 of Rap1A protein by Glu reduces their intrinsic GTPase activities and abolishes their stimulation by GAP1 or GAP3, respectively. Further mutational analysis has revealed that only the Tyr to Phe or Leu (Ras) and Phe to Tyr (Rap1A) substitutions at position 64 still allow these GTPases to be activated by GAPs.

Keywords

Effector Domain Signal Transduce Activity Intrinsic GTPase Activity Rap1 Protein Leu64 Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbacid, M. (1987) Ann. Rev. Blochem. 56, 779–827.CrossRefGoogle Scholar
  2. 2.
    Pizon, V., Chardin, P., Lerosey, I., Olofsson, B. and Tavitian, A. (1988) Oncogene 3, 201–204.PubMedGoogle Scholar
  3. 3.
    Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y. and Noda, M. (1989) Cell 56, 77–84.PubMedCrossRefGoogle Scholar
  4. 4.
    Pizon, V., Lerosey, I., Chardin, P. and Tavitian, A. (1988) Nucleic Acids Res. 16, 7719.PubMedCrossRefGoogle Scholar
  5. 5.
    Ohmstede, C.A., Farrell, F.X., Reep, B.R., Clemetson, K.J. and Lapetina, E.G. (1990). Proc. Natl. Acad. Sci. USA 87, 6527–6531.PubMedCrossRefGoogle Scholar
  6. 6.
    Kitayama, H., Matsuzaki, T., Ikawa, Y. and Noda, M. (1990) Proc. Natl. Acad. Sci. USA 87, 4284–4288.PubMedCrossRefGoogle Scholar
  7. 7.
    Trahey, M. and McCormick, F. (1987) Science 238, 542–545.PubMedCrossRefGoogle Scholar
  8. 8.
    Kikuchi, A., Sasaki, T., Araki, S., Hata, Y. and Takai, Y. (1989) J. Biol. Chem. 264, 9133–9136.PubMedGoogle Scholar
  9. 9.
    Adari, H., Lowy, D.R., Willumsen, B.M., Der, C.J., and McCormick, F. (1988) Science 240, 518–521.PubMedCrossRefGoogle Scholar
  10. 10.
    Cales, C., Hancock, J.F., Marshall, C.J. and Hall, A. (1988) Nature 332, 548–551.PubMedCrossRefGoogle Scholar
  11. 11.
    Quilliam, L.A., Der, C.J., Clark, R., O’Rourke, E.G., Zhang, K., McCormick, F. and Bokoch, G.M. (1990) Mol. Cell. Biol. 10, 2901–2908.PubMedGoogle Scholar
  12. 12.
    Maruta, H., Holden, J., Sizeland, A. and D’Abaco, G. (1991) J. Biol. Chem. in press.Google Scholar
  13. 13.
    Sigal, I.S., Gibbs, J.A., D’Alonzo, J.S., and Scolnick, E.M. (1986). Proc. Natl. Acad. Sci. USA 83, 4725–4729.PubMedCrossRefGoogle Scholar
  14. 14.
    Willumsen, B.M., Papageorge, A.G., Kung, H.F., Bekesi, E., Robins, T., Johnsen, M., Vass, W.C. and Lowy, D.R. (1986). Mol. Cell Biol. 6, 2646–2654.PubMedGoogle Scholar
  15. 15.
    Gibbs, J.B., Schaber, M.D., Schofield, T.L., Scolnick, E.M. and Sigal, I.S. (1989) Proc. Natl. Acad. Sci. USA 86, 6630–6634.PubMedCrossRefGoogle Scholar
  16. 16.
    Fasano, O., Aldrich, F., Tamanoi, E., Taparowsky, M., Furth, M. and Wigier, M. (1984) Proc. Natl. Acad. Sci. USA 81, 4008–4012.PubMedCrossRefGoogle Scholar
  17. 17.
    Baldwin, G.S., Stanley, I.J. and Nice, E.C. (1983) FEBS Letter 153, 257–261.CrossRefGoogle Scholar
  18. 18.
    Srivastava, S.K., Donato, D.A. and Lacal, J.C. (1990) Mol. Cell. Biol. 9, 1779–1783.Google Scholar
  19. 19.
    Lowe, D.G., Capon, D.J., Delwart, E., Sakaguchi, A. Y., Naylor, S.L. and Goeddel, D.V. (1987) Cell 48, 137–165.PubMedCrossRefGoogle Scholar
  20. 20.
    Lowe, D.G., Ricketts, M., Levinson, A.D. and Goeddel, D.V. (1988) Proc. Natl. Acad. Sci. USA Proc. Natl. Acad. Sci. USA 85, 1015–1019.Google Scholar
  21. 21.
    Garret, M.D., Self, A.J., Van Oers, C. and Hall, A. (1989) J. Biol. Chem. 264, 10–13.Google Scholar
  22. 22.
    Smith, D.B. and Johnson, K.S. (1988) Gene 67, 31–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Maruta, H. (1989) In ras Oncogenes (Spandidos, D.A. ed.), Plenum Publishing Co., New York, pp255–260.Google Scholar
  24. 24.
    Brandt, D.R., Asano, T., Pedersen, S.T. and Ross, E.M. (1983) Biochemistry 22, 4357–4362.PubMedCrossRefGoogle Scholar
  25. 25.
    Bradford, M.M. (1976) Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  26. 26.
    Beitel, G.J., Clark, S.G. and Horvitz, H.R. (1990) Nature 348, 503–509.PubMedCrossRefGoogle Scholar
  27. 27.
    Holden, J., Nur-E-Kamal, M.S.A., Fabri, L., Nice, E., Hammacher, A. and Maruta, H. (1991) J. Biol. Chem. 266, In Press.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • M. S. A. Nur-E-Kamal
    • 1
  • H. Maruta
    • 1
  1. 1.Melbourne Tumor Biology Branch Ludwig Institute for Cancer ResearchP.O. Royal Melbourne HospitalVictoriaAustralia

Personalised recommendations