Time-Resolved Biochemical Studies of ras Proteins by Fluorescence Measurements on Tryptophan Mutants

  • Bruno Antonny
  • Michel Roux
  • Marc Chabre
  • Pierre Chardin
Part of the NATO ASI Series book series (NSSA, volume 220)


We have replaced leucine 56 of ras by a tryptophan. The intrinsic fluorescence of this tryptophan was used as an internal conformational probe for time-resolved biochemical studies of the ras protein. Tryptophan fluorescence of mutated ras is very sensitive to magnesium binding, GDP/GTP exchange and GTP hydrolysis. Nucleotide affinities, exchange kinetics and intrinsic GTPase rates of the substituted ras are very close to those of wild-type ras. The SDC 25 gene product enhances GDP/GTP exchange. GAP accelerates GTP hydrolysis by a factor of at least 104. A slow fluorescence change follows the binding of GTPγS, its kinetics are close to those of the intrinsic GTPase, suggesting that a “pre-transition” preceeds the GTPase and is the rate limiting step, as proposed, by Neal et al. (1990). However, GAP does not accelerate this slow conformational change suggesting that the fast GAP-induced catalysis of GTP hydrolysis bypasses this step and might proceed of a different mechanism. We have also studied another mutant where tyrosine 64 was replaced by tryptophan. The Y64W substitution has very little effects on intrinsic GTP hydrolysis and Y64W ras has a the same affinity for GAP than wild-type ras, however GAP is not able to increase GTP hydrolysis on this mutant, suggesting a role for tyrosine 64 in GAP-induced GTP hydrolysis. The implications of these observations on the mechanism of ras action, and a new model, are discussed.


Tryptophan Fluorescence Fluorescence Change Carboxyl Terminal Domain Tyrosine Fluorescence Fluorescence Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbacid, M. (1987) Ann. Rev. Biochem., 56, 779–827.PubMedCrossRefGoogle Scholar
  2. Bourne, H.R., Master, S.B., Miller, R.T., Sullivan K.A. and Heideman, V.Y. (1988) Cold Spring Harbor Symp. Quant. Biol., 53, 221–227.PubMedCrossRefGoogle Scholar
  3. Chardin, P. (1991) Cancer cells, 3, 117–126.PubMedGoogle Scholar
  4. Crechet, J.-B., Poullet, P., Mistou, M.-Y., Parmeggiani, A., Camonis, J., Boy-Marcotte, E., Damak, F. and Jacquet, M. (1990) Science, 248, 866–868.PubMedCrossRefGoogle Scholar
  5. Downward, J., Riehl, R., Wu, L. and Weinberg, R.A. (1990) Proc.Natl.Acad.Sci. USA, 87, 5998–6002.PubMedCrossRefGoogle Scholar
  6. Frech, M., John, J., Pizon, V., Chardin, P., Tavitian, A., Clark, R., McCormick, F. and Wittinghofer, A. (1990) Science, 249, 169–171.PubMedCrossRefGoogle Scholar
  7. Haienbeck, R., Crosier, W.J., Clark, R., McCormick, F. and Koths, K. (1990) J. Biol. Chem., 265, 21922–21928.Google Scholar
  8. Hall, A. (1990a) Science, 249, 635–640.PubMedCrossRefGoogle Scholar
  9. Hall, A. (1990b) Cell, 61, 921–923.PubMedCrossRefGoogle Scholar
  10. Higashijima, T., Ferguson, K. M., Sternweis, P. C., Ross, T. M. and Gilman, A. G. (1987) J. Biol Chem. 262, 752–756.PubMedGoogle Scholar
  11. Huang, Y.K., Kung, H.-F. and Kamata, T. (1990) Proc.Natl.Acad.Sci. USA, 87, 8008–8012.PubMedCrossRefGoogle Scholar
  12. John, J., Frech, M. and Wittinghofer, A. (1988) J. Biol Chem., 263, 11792–11799.PubMedGoogle Scholar
  13. John, J., Schlichting, I., Schütz, E., Rösch, P. and Wittinghofer, A. (1989) J. Biol Chem., 264, 13086–13092.PubMedGoogle Scholar
  14. Krengel, U., Schlichting, I., Scherer, A., Schumann, R., Frech, M., John, J., Kabsch, W., Pai, E. and Wittinghofer, A. (1990) Cell, 62, 539–548.PubMedCrossRefGoogle Scholar
  15. Marshall, M., Hill, W., Ng, A., Vogel, U., Schaber, M., Scolnick, E., Dixon, R., Sigal, I. and Gibbs, J. (1989) EMBO J., 8, 1105–1110.PubMedGoogle Scholar
  16. Mc Cormick, F. (1989) Cell, 56, 5–8.CrossRefGoogle Scholar
  17. Milburn, M.V., Tong, L., deVos, A.M., Brünger, A., Yamaizumi, Z., Nishimura, S. and Kim, S.-H. (1990) Science, 247, 939–945.PubMedCrossRefGoogle Scholar
  18. Neal, S.E., Eccleston, J.F. and Webb, M.R. (1990) Proc.Natl.Acad.Sci USA, 87, 3562–3565.PubMedCrossRefGoogle Scholar
  19. Pai, E.F., Kabsch, W., Krengel, U., Holmes, K., John, J. and Wittinghofer, A. (1989) Nature, 341, 209–214.PubMedCrossRefGoogle Scholar
  20. Pai, E.F., Krengel, U., Petsko, G.A., Goody, R.S., Kabsch, W. and Wittinghofer, A. (1990) EMBO J., 9, 2351–2359.PubMedGoogle Scholar
  21. Schlichting, L, Almo, S.C., Rapp, G., Wilson, K., Petratos, K., Lentfer, A., Wittinghofer, A., Kabsch, W., Pai, E.F., Petsko, G.A. and Goody, R.S. (1990) Nature, 345, 309–315.PubMedCrossRefGoogle Scholar
  22. Srivastava, S., Di-Donato, A. and Lacal, J.-C. (1989) Mol Cell. Biol., 9, 1779–1783.PubMedGoogle Scholar
  23. Stone, J., Vass, W., Wilumsen, B. and Lowy, D. (1988) Mol. Cell. Biol., 8, 3565–3569.PubMedGoogle Scholar
  24. Trahey, M. and Mc Cormick, F. (1987) Science, 238, 542–545.PubMedCrossRefGoogle Scholar
  25. Tucker, J., Sczakiel, G., Feuerstein, J., John, J., Goody, R.S. and Wittinghofer, A. (1986) EMBO J., 5, 1351–1358.PubMedGoogle Scholar
  26. Valencia, A., Chardin, P., Wittinghofer, A. and Sander, C. (1991) Biochemistry, in press.Google Scholar
  27. Vogel, U., Dixon, R., Schaber, M., Diehl, R., Marshall, M., Scolnick, M., Sigal, I. and Gibbs, J. (1988) Nature, 335, 90–93.PubMedCrossRefGoogle Scholar
  28. Wolfman, A. and Macara, I.G. (1990) Science, 248, 67–69.PubMedCrossRefGoogle Scholar
  29. Zahraoui, A., Touchot, N., Chardin, P. and Tavitian, A. (1989) J. Biol. Chem., 264, 12394–12401.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Bruno Antonny
    • 1
  • Michel Roux
    • 1
  • Marc Chabre
    • 1
  • Pierre Chardin
    • 1
  1. 1.CNRS - Institut de Pharmacologie Moléculaire et CellulaireValbonneFrance

Personalised recommendations