Calcium-Regulated Protein Kinases Low Km cGMP Phosphodiesterases: Targets for Novel Antihypertensive Therapy

  • Paul J. Silver
  • Edward D. Pagani
  • Wayne R. Cumiskey
  • Ronald L. Dundore
  • Alex L. Harris
  • King C. Lee
  • Alan M. Ezrin
  • R. Allan Buchholz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 308)


The recent gain in knowledge over the last ten years on the intracellular mechanisms which regulate vascular smooth muscle tone has expanded opportunities for the potential discovery of novel vasodilator/antihypertensive agents. This review focuses on three intracellular enzyme systems: myosin light chain kinase (MLCK) and protein kinase C (PKC), which are Ca2+-regulated protein kinases implicated in the control of smooth muscle tone, and the cGMP phosphodiesterases (PDEs), which regulate the levels of cGMP in smooth muscle (Fig. 1).


Vascular Smooth Muscle Mean Arterial Pressure Atrial Natriuretic Factor Myosin Light Chain Phosphorylation Calmodulin Antagonist 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walsh MP. Calcium regulation of smooth muscle contraction. In: Calcium and Cell Physiology. D. Marme (ed), Berlin: Springer-Verlag, 1985.Google Scholar
  2. 2.
    Kamm KE, Stull JT. Regulation of smooth muscle contractile elements by second messengers. Ann Rev Physiol 51: 299, 1989.CrossRefGoogle Scholar
  3. 3.
    Moreland RS, Cilea J and Moreland S. Calcium and phosphorylation dependent regulation of vascular smooth muscle contraction. In: Cellular and Molecular Mechanisms of Hypertension. R.H. Cox (ed), New York: Plenum Publishers, (in press), 1990.Google Scholar
  4. 4.
    Dillon PF, Aksoy MD, Driska SP, Murphy RA. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 211: 495, 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Ebashi S. Regulation of contractility. In: Muscle and Non-Muscle Motility. A. Stracher (ed). New York: Academic Press, 1983.Google Scholar
  6. 6.
    Ngai PK, Walsh MP. Inhibition of smooth muscle actin.activated myosin Mg2+-ATPase by caldesmon. J Biol Chem 259: 13656, 1984.PubMedGoogle Scholar
  7. 7.
    Smith CWS, Prichard K, Marston SB. The mechanism of Cat+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin. J Biol Chem 262: 116, 1987.PubMedGoogle Scholar
  8. 8.
    Morgan JP, Morgan KG. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol (Lund) 352: 155, 1984.Google Scholar
  9. 9.
    Rasmussen H, Takuwa Y, Park S. Protein kinase C in the regulation of smooth muscle contraction. FASEB J 1: 177, 1987.Google Scholar
  10. 10.
    Griendling KK, Rittenhouse SE, Brock TA, et al. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem 261: 5901, 1986.PubMedGoogle Scholar
  11. 11.
    Catterjee M, Tejada M. Phorbol ester-induced contraction in chemically-skinned vascular smooth muscle. Am J Physiol 251: C356, 1986.Google Scholar
  12. 12.
    Parks S, Rasmussen H. Carbachol-induced protein phosphorylation changes in bovine tracheal smooth muscle. J Biol Chem 261: 15734, 1986.Google Scholar
  13. 13.
    Silver PJ, Lepore RE, Cumiskey WR, Kiefer D, Harris AL. Protein kinase C activity and reactivity to phorbol ester in vascular smooth muscle from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Biochem Biophys Res Commun 154: 272, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    Kemp BE, Pearson RB, Guerriero V, Bagchi IC, Means AR. The calmodulin binding domain of chicken smooth muscle myosin light chain kinase contains a pseudosubstrate sequence. J Biol Chem 262: 2542, 1987.PubMedGoogle Scholar
  15. 15.
    Moreland S, Hunt JT. Analogs of the calmodulin binding site of myosin light chain (MLC) kinase. FASEB J 46: 1098, 1987.Google Scholar
  16. 16.
    Foster CJ, Gaeta FCA. The calmodulin binding domain of chicken gizzard myosin light-chain kinase contains two non-overlapping active site directed inhibitory sequences. Biophys J 53: 182a, 1988.Google Scholar
  17. 17.
    Tanaka T, Umekuwa H, Saitoh M, et al Modulation of calmodulin function and of Ca2+-induced smooth muscle contraction by the calmodulin antagonist, HT-74. Mol Pharmacol 29: 264, 1986.PubMedGoogle Scholar
  18. 18.
    Prozialeck WC. Structure-activity relationships of calmodulin antagonists. Ann Rep Med Chem 18: 203, 1983.CrossRefGoogle Scholar
  19. 19.
    Hidaka H, Tanaka T. Naphthalenesulfonamides as calmodulin antagonists. In: Methods in Enzymology, Vol. 102, Calmodulin and Calcium-Binding Proteins. A.R. Means and B.W. O’Malley (eds), New York, Academic Press, 1983, p 185.Google Scholar
  20. 20.
    Roufogalis BD. Calmodulin antagonism. In: Calcium and Cell Physiology. D. Marine (ed), Berlin: Springer-Verlag, 1985.Google Scholar
  21. 21.
    Mannold R. Calmodulin—structure, function and drug action. Drugs of the Future 9: 677, 1984.Google Scholar
  22. 22.
    Silver PJ, Dachiw J, Ambrose JM, Pinto PB. Effects of the calcium antagonists perhexiline and cinnarizine on vascular and cardiac contractile protein function. J Pharmacol Exp Ther 234: 629, 1985.PubMedGoogle Scholar
  23. 23.
    Silver PJ, Connell ML, Dillon KM, Cumiskey WR, Volberg WA, Ezrin AM. Inhibition of calmodulin and protein kinase C by amiodarone and other class III antiarrhythmic agents. Cardiovasc Drugs and Therapy 3: 657, 1989.Google Scholar
  24. 24.
    Silver PJ, Dachiw J, Ambrose JA. Effects of calcium antagonists and vasodilators on arterial myosin phosphorylation and actin-myosin interactions. J Pharmacol Exp Ther 230: 141, 1984.PubMedGoogle Scholar
  25. 25.
    Johnson JD, Fugman DA. Calcium and calmodulin antagonists binding to calmodulin and relaxation of coronary segments. J Pharmacol Exp Ther 226: 330, 1983.PubMedGoogle Scholar
  26. 26.
    Silver PJ, Sulkowski TJ, Lappe RW, Wendt RL. Wy-46–300 and Wy46,531: Vascular smooth muscle relaxant/antihypertensive agents with combined Ca2+ antagonist/myosin phosphorylation inhibitory mechanisms. J Cardiovasc Pharmacol 8: 1168, 1986.PubMedCrossRefGoogle Scholar
  27. 27.
    Silver PJ, Fenichel R, Wendt RL. Structural variants of verapamil and W-7 with combined Ca2+ entry blockade/myosin phosphorylation inhibitory mechanisms. J Cardiovasc Pharmacol 11: 299, 1988.PubMedCrossRefGoogle Scholar
  28. 28.
    Hidaka H, Inagaki M, Kawamoto S, Sasaki Y. Isoquinoline sulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 23: 5036, 1984.PubMedCrossRefGoogle Scholar
  29. 29.
    Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tornita F. Staurosporine, a potent inhibitor of phospholipid/Ca++ dependent protein kinase. Biochem Biophys Res Commun 135: 397, 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Silver PJ, Pagani ED. Biochemical and pre-clinical pharmacology of selective inhibitors of cardiovascular phosphodiesterase isozymes. In: Inotropic Drugs: Basic Research and Clinical Practice. P Allen, J. Gwathmey, M. Briggs (eds). New York: Marcel Dekker, (in press), 1990.Google Scholar
  31. 31.
    Silver PJ, Harris AL. Phosphodiesterase isozyme inhibitors and vascular smooth muscle. In: Proceedings of the Second International Symposium on Resistance Vessels. W. Halpern, J. Brayden, N. McLaughlin et al (eds). Ithaca: Perinatology Press, 1988.Google Scholar
  32. 32.
    Kauffman RF, Scheneck KM, Utterback BG, Crowe VG, Cohen MC. In vitro vascular relaxation by new inotropic agents: Relationship to phosphodiesterase inhibition and cyclic nucleotides. J Pharmacol Exp Ther 242: 864, 1987.PubMedGoogle Scholar
  33. 33.
    Silver PJ, Lepore RE, O’Connor B, Lemp BM, Bentley RG, Harris AL. Inhibition of the low Km cAMP phosphodiesterase and activation of the cyclic AMP system in vascular smooth muscle by milrinone. J Pharmacol Exp Ther 247: 34, 1988.PubMedGoogle Scholar
  34. 34.
    Prigent AF, Fougier S, Nemoz G, et al Comparison of cyclic nucleotide phosphodiesterase isoforms from rat heart and bovine aorta. Separation and inhibition by selective reference phosphodiesterase inhibitors. Biochem Pharmacol 37: 3671, 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    Silver PJ, Hamel LT, Perrone MH, Bentley RG, Bushover CR, Evans DB. Differential pharmacologic sensitivity of cyclic nucleotide phosphodiesterase isozymes isolated from cardiac muscle, arterial and airway smooth muscle. Eur J Pharmacol 150: 85, 1988.PubMedCrossRefGoogle Scholar
  36. 36.
    Lugnier C, Schoeffter P, LeBec A, Strouthou E, Stoclet JC. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem Pharmacol 35: 1743, 1986.PubMedCrossRefGoogle Scholar
  37. 37.
    Harris AL, Lemp BM, Bentley RG, Perrone MH, Hamel LT, Silver PJ. Phosphodiesterase isozyme inhibition and the potentiation by zaprinast of endothelium-derived relaxing factor and guanylate cyclase stimulatory agents in vascular smooth muscle. J Pharmacol Exp Ther 249: 394, 1989.PubMedGoogle Scholar
  38. 38.
    Buchholz RA, Dundore RL, Pratt PF, Hallenbeck WD, Wassey ML and Silver PJ. The selective phosphodiesterase I inhibitor zaprinast (ZAP) potentiates the hypotensive effect of sodium nitroprusside (SNP) in conscious SHR. FASEB J 3: A1186, 1989.Google Scholar
  39. 39.
    Lal B, Dohadwalla AN, Dadkar NK, D’sa A, de Souza NJ. Trequinsin, a potent new antihypertensive vasodilator in the series of 2-(arylimino)-3-alkyl-9,10-dimethoxy-3,4,6,7-tetrahydro-2H-pyrimido [6,1-a] isoquinolin-4-ones. JMed Chem 27: 1470, 1984.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Paul J. Silver
    • 1
  • Edward D. Pagani
    • 1
  • Wayne R. Cumiskey
    • 1
  • Ronald L. Dundore
    • 1
  • Alex L. Harris
    • 1
  • King C. Lee
    • 1
  • Alan M. Ezrin
    • 1
  • R. Allan Buchholz
    • 1
  1. 1.Department of Cardiovascular PharmacologySterling Research GroupRensselaerUSA

Personalised recommendations