Advertisement

Altered Phospholipase Activities Related to α1-Adrenergic Receptor Supersensitivity of Aortas from Aldosterone-Salt Hypertensive Rats

  • Allan W. Jones
  • Shivendra D. Shukla
  • Brinda B. Geisbuhler
  • Susan B. Jones
  • Jacquelyn M. Smith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 308)

Abstract

Vascular smooth muscle from several hypertensive models exhibits supersensitivity to catecholamines, which precedes the development of overt hypertension in rats given mineralocorticoid-salt treatment (1–5). In previous studies we did not find significant changes in αl-receptor characteristics (receptor type, dissociation constant or maximal receptor binding) in aorta from aldosterone-salt hypertensive rats (AHR) (6,7). Since we observed a 2–15 fold leftward shift in the NE EC50 (concentration of norepinephrine required for 50% response) for functional responses in AHR, we concluded that increased efficacy of post receptor events occurs in AHR (7,8).

Keywords

Phosphatidic Acid Phosphatidic Acid Receptor Occupancy Inositol Phosphate PLA2 Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garwitz ET, Jones AW. Aldosterone infusion into the rat and dose-dependent changes in blood pressure and arterial ionic transport. Hypertension 4: 374, 1982.PubMedGoogle Scholar
  2. 2.
    Holloway ET, Bohr DF. Reactivity of vascular smooth muscle in hypertensive rats. Circ Res 33: 678, 1973.PubMedGoogle Scholar
  3. 3.
    Jones AW. Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats: influence of aldosterone, norepinephrine, and angiotensin. Circ Res 33: 563, 1973.PubMedGoogle Scholar
  4. 4.
    Berecek KH, Strockes M, Gross F, Changes in renal vascular sensitivity at various stages of deoxycorticosterone hypertension in rats. Circ Res 46: 619, 1980.PubMedGoogle Scholar
  5. 5.
    Katovich MJ, Soltis EE, Iloye E, Field FP. Time course alteration in vascular adrenergic responsiveness in DOCA/NaC1 treated rat. Pharmacology 29: 173, 1984.PubMedCrossRefGoogle Scholar
  6. 6.
    Jones SB, Smith JM, Jones AW, Bylund DB. Alpha-1 adrenergic receptor binding in aorta from rat and dog: comparison of [3H] prazosin and ß-iodo-[125I]-4-hydroxyphenyl-ethyl-amino-methyltetralone. J Pharmacol Exp Ther 241: 875, 1987.PubMedGoogle Scholar
  7. 7.
    Smith JM, Jones SB, Bylund DB, Jones AW. Characterization of the alpha-1 adrenergic receptor in the thoracic aorta of control and aldosterone hypertensive rats: correlation of radio-ligand binding with potassium efflux and contraction. J Pharmacol Exp Ther 241: 882, 1987.PubMedGoogle Scholar
  8. 8.
    Jones AW, Geisbuhler BB, Shukla SD, Smith JM. Altered biochemical and functional responses in aorta from hypertensive rats. Hypertension 11: 627, 1988.PubMedGoogle Scholar
  9. 9.
    Exton JH. Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J 2: 2670, 1988.PubMedGoogle Scholar
  10. 10.
    Turla MB, Webb RC. Augmented phosphoinositide metabolism in aortas from genetically hypertensive rats. Am J Physiol 258: H173, 1990.PubMedGoogle Scholar
  11. 11.
    McMahon EG, Paul RJ. Calcium sensitivity of isometric force in intact and chemically skinned aortas during the development of aldosterone-salt hypertension in the rat. Circ Res 56: 427, 1985.PubMedGoogle Scholar
  12. 12.
    Pai JK, Siegel ME, Egan RW, Billah MM. Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes. JBiol Chem 263: 1 2472, 1988.Google Scholar
  13. 13.
    Billah MM, S. Eckel, Mullmann TJ, Egen RW, Siegel MI. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. J Biol Chem 264: 17069, 1989.PubMedGoogle Scholar
  14. 14.
    Exton JH. Signaling through phosphatidylcholine breakdown. J Biol Chem 205: 1, 1990.Google Scholar
  15. 15.
    Martin TW. Formation of diacylglycerol by a phospholipase D - phosphatidate phosphatase pathway specific for phosphatidylcholine in endothelial cells. Biochim Biophys Acta 962: 282, 1988.PubMedGoogle Scholar
  16. 16.
    Desjardins-Giasson S, Gutkowska J, Garcia B, Genest J. Release of prostaglandins by the mesenteric artery of the renovascular and spontaneously hypertensive rat. Can J Physiol Pharmacol 62: 89, 1984.PubMedCrossRefGoogle Scholar
  17. 17.
    Nishimiya T, Daniell HB, Webb JB, Oatis J, Walle T, Gaffney TE, Halushka PV. Chronic treatment with propranolol enhances the synthesis of protaglandins E2 and I2 by the aorta of spontaneously hypertensive rats. J Pharmacol Exp Ther 253: 207, 1990.PubMedGoogle Scholar
  18. 18.
    Jeremy JY, Mikhailidis DP, Dandona P. Adrenergic modulation of vascular prostacyclin (PGI2) secretion. Eur J Pharmacol 114: 33, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Stewart D, Pountney E, Filchett D. Norepinephrine-stimulated vascular prostacyclin synthesis: Receptor-dependent calcium channels control prostaglandin synthesis. Can J Physiol Pharmacol 62: 1341, 1984.PubMedCrossRefGoogle Scholar
  20. 20.
    Rana RS, Hokin LE. Role of phosphoinositides in transmembrane signaling. Physiol Rev 70: 115, 1990.PubMedGoogle Scholar
  21. 21.
    Pipili E, Poyses NL. Release of prostaglandins I2 and E2 from the perfused mesenteric arterial bed of normotensive and hypertensive rats. Effects of sympathetic nerve stimulation and norepinephrine administration. Prostaglandins 23: 543. 1982.PubMedCrossRefGoogle Scholar
  22. 22.
    Somlyo AV, Kitazawa T, Horiuti K, Kobayashi S, Trentham D, Somlyo AP. Heparin-sensitive inositol triphosphate signaling and the role of G-protein in Ca2+ release and contractile regulation in smooth muscle. In: Frontiers in Smooth Muscle Research. New York: Alan R. Liss, 1990, pp 167.Google Scholar
  23. 23.
    Lapetina EG, Siess W. Measurement of inositol phospholipid turnover in platelets. Methods in Enzymology 141: 176, 1987.PubMedCrossRefGoogle Scholar
  24. 24.
    Shukla SD, Hanahan DJ. AGEPC (platetet activating factor) induced stimulation of rabbit platelets: Effects on phosphatidyl-inositol, di-and tri-phosphoinositides and phosphatidic acid metabolism. Biochem Biophys Res Commun 106: 697, 1982.PubMedCrossRefGoogle Scholar
  25. 25.
    Jones AW, Smith JM. Altered Ca-dependent fluxes of 42K in rat aorta during aldosterone-salt hypertension. Prog Clin Biol Res 219: 265, 1986.PubMedGoogle Scholar
  26. 26.
    Smith JM, Jones AW. Calcium antagonists inhibit elevated potassium efflux from aorta of aldosterone-salt hypertensive rats. Hypertension 15: 78, 1990.PubMedGoogle Scholar
  27. 27.
    Coburn RF, Baron C, Papadoulos MT. Phosphoinositide metabolism and metabolism — contraction coupling in rabbit aorta. Am J Physiol 299: H1476, 1988.Google Scholar
  28. 28.
    Griendling KK, Rittenhouse SE, Brock TA, Ekstein LS, Gimbrone MA, Jr., Alexander RW. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem 261: 5901, 1986.PubMedGoogle Scholar
  29. 29.
    Ohanian J, Ollerenshaw J, Collins P, Heagerty A. Agonist-induced production of 1,2-diacylglycerol and phosphatidic acid in intact resistance arteries. J Biol Chem 265: 8921, 1990.PubMedGoogle Scholar
  30. 30.
    Jones AW, Shukla SD, Geisbuhler BB. Evidence for phospholipase D activity in rat aorta that is stimulated by norepinephrine. FASEB J 4: A333 Abs., 1990.Google Scholar
  31. 31.
    Heller M. Phospholipase D. Adu Lipid Res 16: 267, 1978.Google Scholar
  32. 32.
    Reinhold SL, Prescott SM, Zimmerman GA, McIntyre TM. Activation of human neutrophil phospholipase D by three separable mechanisms. FASEB J 4: 208, 1990.PubMedGoogle Scholar
  33. 33.
    Martin TM, Feldman DR, Goldstein KE, Wagner JR. Long-term phorbol ester treatment dissociates phospholipase D activation from phosphoinositide hydrolysis and prostacyclin synthesis in endothelial cells stimulated with bradykinin. Biochem Biophys Res Commun 165: 319, 1989.PubMedCrossRefGoogle Scholar
  34. 34.
    Uehara Y, Ishimitsu T, Ishii M, Sugimoto T. Prostacyclin synthase and phospholipases in the vascular wall of experimental hypertensive rats. Prostaglandins 34: 423, 1987.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Allan W. Jones
    • 1
  • Shivendra D. Shukla
    • 1
  • Brinda B. Geisbuhler
    • 1
  • Susan B. Jones
    • 1
  • Jacquelyn M. Smith
    • 1
  1. 1.Departments of Physiology and PharmacologyUniversity of MissouriColumbiaUSA

Personalised recommendations