Regulation of Cardiac Muscle Function in the Hypertensive Heart

  • Edward G. Lakatta
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 308)


The heart and vasculature of chronically hypertensive patients at any age exhibit cardiovascular changes that occur with aging in individuals whose arterial pressure is within clinically defined normal range. These changes include left ventricular hypertrophy (1–7), a diminution in resting left ventricular early diastolic filling rate (1,2,8,9), increased vascular stiffness (10–16) and aortic impedance (17,18), an increase in peripheral vascular resistance, a diminution in the baroreceptor reflex (19) and a diminished response to catecholamines (20–28).


Sarcoplasmic Reticulum Cardiac Hypertrophy Pressure Overload Hypertrophied Heart Contraction Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gerstenblith G, Frederiksen J, Yin FCP, et al. Echocardiographic assessment of a normal adult aging population. Circulation 56: 273, 1977.PubMedGoogle Scholar
  2. 2.
    Gardin JM, Henry WL, Savage DD, et al. Echocardiographic measurements in normal subjects: evaluation of an adult population without clinically apparent heart disease. J Clin Ultrasound 7: 439, 1979.PubMedCrossRefGoogle Scholar
  3. 3.
    Sjogren AL. Left ventricular wall thickness determined by ultrasound in 100 subjects without heart disease. Chest 60: 341, 1971.PubMedCrossRefGoogle Scholar
  4. 4.
    Lakatta EG. Alterations in the cardiovascular system that occur in advanced age. Fed Proc 38: 163, 1979.PubMedGoogle Scholar
  5. 5.
    Devereux RB, Savage DD, Drayer JIM, Laragh JH. Left ventricular hypertrophy and function in high, normal, and low-renin forms of essential hypertension. Hypertension 4: 524, 1982.PubMedGoogle Scholar
  6. 6.
    Drayer JIM, Weber MA, DeYoung JL. Blood pressure as a determinant of cardiac left ventricular muscle mass. Arch Intern Med 143: 90, 1983.PubMedCrossRefGoogle Scholar
  7. 7.
    Shkhvatsabaya IK, Usubaliyev NN, Yurenev AP, et al. The interrelations of cardiac and vascular wall hypertrophy in arterial hypertension. Cardiouasc Rev Rep 2: 1145, 1981.Google Scholar
  8. 8.
    Gerstenblith G, Fleg JL, Becker LC, et al. Maximum left ventricular filling rate in healthy individuals measured by gated blood pool scans. Effect of age. Circulation 68: 100–101, 1983.Google Scholar
  9. 9.
    Savage DD, Drayer JIM, Henry WL, et al. Echocardiographic assessment of cardiac anatomy and function in hypertensive subjects. Circulation 59: 623, 1979.PubMedGoogle Scholar
  10. 10.
    Wolinsky H. Long-term effects of hypertension on the rat aortic wall and their relation to concurrent aging changes. Morphological and chemical studies. Circ Res 30: 301, 1972.PubMedGoogle Scholar
  11. 11.
    Gerstenblith G, Lakatta EG, Weisfeldt ML. Age changes in myocardial function and exercise response. Prog Cardiovasc Res 19: 1, 1976.CrossRefGoogle Scholar
  12. 12.
    Bader H. Dependence of wall stress in the human thoracic aorta on age and pressure. Cire Res 30: 354, 1967.Google Scholar
  13. 13.
    Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 18: 278, 1966.PubMedGoogle Scholar
  14. 14.
    Yin FCCP, Spurgeon HA, Kallman CH. Age-associated alterations in viscoelastic properties of canine aortic strips. Circ Res 53: 464, 1963.Google Scholar
  15. 15.
    Landowne M. The relation between intra-arterial pressure and impact pulse wave velocity with regard to age and arteriosclerosis. J Gerontol 13: 153, 1958.PubMedGoogle Scholar
  16. 16.
    Avolio AP, Fa-Quan D, We-Qiang L, et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation 71: 202, 1985.PubMedCrossRefGoogle Scholar
  17. 17.
    Ting CT, Brin KP, Lin SJ, et al. Arterial hemodynamics in human hypertension. J Clin Invest 78: 1462, 1986.PubMedCrossRefGoogle Scholar
  18. 18.
    O’Rourke MF. Arterial Function in Health and Disease. New York: Churchill Livingstone, p 1, 1982.Google Scholar
  19. 19.
    Gribbin B, Pickering TG, Sleight P, et al. Effect of age and high blood pressure on baroreflex sensitivity in man. Circ Res 29: 424, 1971.PubMedGoogle Scholar
  20. 20.
    Bartel O, Buhler FR, Klowski W, et al. Decreased beta-adrenoreceptor responsiveness as related to age, blood pressure, and plasma catecholamines in patients with essential hypertension. Hypertension 2: 130, 1980.Google Scholar
  21. 21.
    Kuramoto K, Matsushita S, Mifune J, et al. Electrocardiographic and hemodynamic evaluation of isoproterenol test in elderly ischemic heart disease, Jpn Circ J 42: 955, 1978.PubMedCrossRefGoogle Scholar
  22. 22.
    Lakatta EG. Age-related alterations in the cardiovascular response to adrenergic mediated stress. Fed Proc 39: 3173, 1980.PubMedGoogle Scholar
  23. 23.
    London DM, Safar ME, Weiss YA, et al. Isoproterenol sensitivity and total body clearance of propranolol in hypertensive patients. J Clin Pharmacol 16: 174 1976.PubMedGoogle Scholar
  24. 24.
    Yin FCP, Spurgeon HA, Greene HL, et al. Age-associated decrease in heart rate response to isoproterenol in dogs. Mech Aging Dey 10: 17, 1979.CrossRefGoogle Scholar
  25. 25.
    Yin FCP, Spurgeon HA, Raizes GS, et al. Age associated decrease in chronotropic response to isoproterenol. Circulation 54: 100–167, 1976.Google Scholar
  26. 26.
    Ibsen H, Julius S. Pharmacologic tools for assessment of adrenergic nerve activity in human hypertension. Fed Proc 43: 67, 1984.PubMedGoogle Scholar
  27. 27.
    Lakatta EG, Yin FCP. Myocardial aging: Functional alterations and related cellular mechanisms. Am J Physiol 242: H927, 1982.PubMedGoogle Scholar
  28. 28.
    Ibsen H, Julius S. Pharmacologic tools of assessment of adrenergic nerve activity in human hypertension. Fed Proc 43: 67, 1984.PubMedGoogle Scholar
  29. 29.
    Dzau VJ, Safar ME. Large conduit arteries in hypertension: role of the vascular renin-angiotensin system. Circulation 77: 947, 1988.PubMedCrossRefGoogle Scholar
  30. 30.
    Avolio AP, Chen S-G, Wang R-P, et al. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 68: 50, 1983.PubMedCrossRefGoogle Scholar
  31. 31.
    Lakatta EG. Chaotic behavior of myocardial cells: possible implications regarding the pathophysiology of heart failure. Perspect Biol Med 32: 421, 1989.PubMedGoogle Scholar
  32. 32.
    Capasso JM, Malhotra A, Scheuer J, Sonnenblick EH. Myocardial biochemical, contractile and electrical performance following imposition of hypertension in young and old rats. Circ Res 58: 445, 1986.PubMedGoogle Scholar
  33. 33.
    Gulch RW, Baumann R, Jacob R. Analysis of myocardial action potential in left ventricular hypertrophy of Goldblatt rats. Basic Res Cardiol 74: 69, 1979.PubMedCrossRefGoogle Scholar
  34. 34.
    Aronson RS. Characteristics of action potential of hypertrophied myocardium from rats with renal hypertension. Circ Res 47: 443, 1980.PubMedGoogle Scholar
  35. 35.
    Capasso JM, Aronson RS, Sonnenblick EH. Reversible alterations in excitation-contraction coupling during myocardial hypertrophy in papillary muscle. Circ Res 51: 189, 1982.PubMedGoogle Scholar
  36. 36.
    Keung ECH, Aronson RS. Non-uniform electrophysiological properties and electrotonic interaction in hypertrophied rat myocardium. Circ Res 49: 150 1981.PubMedGoogle Scholar
  37. 37.
    Keung EC. Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res 64: 753, 1989.PubMedGoogle Scholar
  38. 38.
    Mayoux E, Scamps F, Oliviero P, Vasson G, Charlemagne D. Calcium channels in normal and hypertrophied rat heart. J Mol Cell Cardiol 21: S-18, 1989.CrossRefGoogle Scholar
  39. 39.
    Mayoux E, Callens F, Swynghedauw B, Charlemagne D. Adaptational process of the cardiac Cat+ channels to pressure overload: biochemical and physiological properties of the dihydropyridine receptors in normal and hypertrophied rat hearts. J Cardiovasc Pharmac 12: 390, 1988.CrossRefGoogle Scholar
  40. 40.
    Lecarpentier Y, Bugaisky LB, Chemla D, Mercadier JJ, Schwartz K, Whalen RG, Martin JL. Coordinated changes in contractility, energetics, and isomyosins after aortic stenosis. Am J Physiol 252: H282, 1987.Google Scholar
  41. 41.
    Bassett AL, Gelband H. Chronic partial occlusion of the pulmonary artery in cars. Circ Res 32: 15, 1973.PubMedGoogle Scholar
  42. 42.
    Teneick RE, Houser SR, Bassett AL. Cardiac hypertrophy and altered cellular electrical activity of the myocardium: possible electrophysiological basis for myocardial contractility changes. In: Physiology and Pathophysiology of the Heart, 2nd edition, N. Sperelakis (ed). Norwell: Kluwer Academic Publishers, p 573, 1989.CrossRefGoogle Scholar
  43. 43.
    Tritthart H, Luedcke H, Bayer R, Stierle H, and Kaufmann R. Right ventricular hypertrophy in the Catan electrophysiological and anatomical study. J Mol Cell Cardiol 7: 163, 1975.PubMedCrossRefGoogle Scholar
  44. 44.
    Kaufmann RL, Homburger H, Wirth H. Disorder in excitation-contraction coupling of cardiac muscle from cats with experimentally produced right ventricular hypertrophy. Circ Res 58: 346 1971.Google Scholar
  45. 45.
    Kleiman RB, Houser SR. Calcium currents in normal and hypertrophied isolated feline ventricular myocytes. Am J Physiol 255: H1424, 1988.Google Scholar
  46. 46.
    Kleiman RB, Houser SR. Outward currents in normal and hypertrophied feline ventricular myocytes. Am J Physiol 256: H1450, 1989.PubMedGoogle Scholar
  47. 47.
    Gwathmey JK, Morgan JP. Altered calcium handling in experimental pressure-overload hypertrophy in the ferret. Circ Res 57: 837, 1985.Google Scholar
  48. 48.
    Dinda BB, Carson NL, Houser SR. Calcium transient and contractile properties of feline ventricular myocytes in heart failure. FASEB J 3: A984, 1989.Google Scholar
  49. 49.
    Morgan JP, MacKinnon R, Feldman M, Grossman W, Gwathmey J. The effects of cardiac hypertrophy on intracellular Ca2+ handling. In: Diastolic Relaxation of the Heart, W. Grossman and B. Lorell (eds). Boston: Martinus Nijhoff, p 97, 1988.Google Scholar
  50. 50.
    Boyett MR, Capogrossi MC, duBell WH, Lakatta EG, Spurgeon HA. Cytosolic Ca2+ modulation of the action potential in right ventricular myocytes. J Physiol (Lond) 415: 109P, 1989.Google Scholar
  51. 51.
    de la Bastie D, Levitsky D, Rappaport L, et al. Function of the sarcoplasmic reticulum and expression of its Cat+ ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 66: 554, 1990.PubMedGoogle Scholar
  52. 52.
    Lamers JMJ, Stinis JT. Defective calcium pump in the sarcoplasmic reticulum of the hypertrophied rabbit heart. Life Sci 24: 2313 1979.PubMedCrossRefGoogle Scholar
  53. 53.
    Alpert NR, Blanchard EM, Mulieri LA. The quantity and rate of Ca2+ uptake in normal and hypertrophied hearts. I n: Pathophysiology of Heart Disease, N. Dalla, P. Singel, R.E. Bemish (eds), New York: Raven Press, p 99, 1987.Google Scholar
  54. 54.
    Nagai R, Zarain-Herzberg A, Brandl CJ, et al. Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86: 2966, 1989.PubMedCrossRefGoogle Scholar
  55. 55.
    Charlemagne D, Maixen J-M, Preteseille M, Lelievre LG. Ouabain binding sites and (Na+,K+)-ATPase activity in rat cardiac hypertrophy. J Biol Chem 261: 185, 1986.PubMedGoogle Scholar
  56. 56.
    Orlowski J, J. B. Lingrel. Differential expression of the Na,KATPase ai and a2 subunit genes in murine myogenic cell line. J Biol Chem 263: 17817, 1988.PubMedGoogle Scholar
  57. 57.
    Houser SR, Freeman AR, Jaeger JM, Breisch EA, Coulson RL, Carey R, Spann JF. Resting potential changes associated with Na-K pump in failing heart muscle. Am J Physiol 240: H168, 1981.PubMedGoogle Scholar
  58. 58.
    Hanf R, Drubaix I, Marotte F, Lelievre LG. Rat cardiac hypertrophy. Altered sodium-calcium exchange activity in sarcolemma vesicles. FEB 236: 145, 1988.CrossRefGoogle Scholar
  59. 59.
    Fabiato A, Fabiato F. Excitation-contraction coupling of isolated cardiac fibers with disrupted or closed sarcolemma; calcium dependent cyclic and tonic contractions. Circ Res 32: 293, 1972.Google Scholar
  60. 60.
    Kass RS, Tsien RW, Weingart R. Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. J Physiol (Lond) 281: 209, 1978.Google Scholar
  61. 61.
    Lakatta EG, Dappe DL. Diastolic scattered light fluctuation, resting force and twitch force in mammalian cardiac muscle. J Physiol (Lond) 315: 369 1981.Google Scholar
  62. 62.
    Stern MD, Kort AA, Bhatnagar GM, Lakatta EG. Scattered-light intensity fluctuations in diastolic rat cardiac muscle caused by spontaneous Ca2+-dependent cellular mechanical oscillations. J Gen Physiol 82: 119, 1983.PubMedCrossRefGoogle Scholar
  63. 63.
    Kort AA, Lakatta EG. Calcium-dependent mechanical oscillations occur spontaneously in unstimulated mammalian cardiac tissues. Circ Res 54: 119, 1983.Google Scholar
  64. 64.
    Lakatta EG, Capogrossi MC, Kort AA, Stern MD. Spontaneous myocardial Ca oscillations: an overview with emphasis on ryanodine and caffeine. Fed Proc 44: 2977, 1985.PubMedGoogle Scholar
  65. 65.
    Lakatta EG, Capogrossi MC, Spurgeon HA, Stern MD. Characteristics and functional implications of spontaneous sarcoplasmic reticulum generated cytosolic calcium oscillations in myocardial tissue. In: Cell Calcium Metabolism: PhysiologyBiochemistry, Pharmacology and Clinical Implications, G. Fiskum (ed). New York: Plenum Publishing Co., p 529, 1989.Google Scholar
  66. 66.
    Capogrossi MC, Kort AA, Spurgeon HA, Lakatta EG. Single adult rabbit and rat cardiac myocytes retain the Ca2+- and species-dependent systolic and diastolic properties of intact muscle. J Gen Physiol 88: 589, 1986.PubMedCrossRefGoogle Scholar
  67. 67.
    Kort AA, Capogrossi MC, Lakatta EG. Frequency, amplitude, and propagation velocity of spontaneous Ca2+-dependent contractile waves in intact adult rat cardiac muscle and isolated myocytes. Circ Res 57: 844, 1985.PubMedGoogle Scholar
  68. 68.
    Wier WG, Kort AA, Stern MD, et al. Cellular calcium fluctuations in mammalian heart: direct evidence from noise analysis of aequorin signals in Purkinje fibers. Proc Natl Acad Sci USA 80: 7367, 1983.PubMedCrossRefGoogle Scholar
  69. 69.
    Orchard CH, Eisner DA, Allen DG. Oscillations of intracellular Ca2+ in mammalian cardiac muscle. Nature 30: 735, 1983.CrossRefGoogle Scholar
  70. 70.
    Capogrossi MC, Lakatta EG. Frequency modulation and synchronization of spontaneous oscillations in cardiac cells. Am J Physiol 248: H412, 1985.PubMedGoogle Scholar
  71. 71.
    Capogrossi MC, Suarez-Isla BA, Lakatta EG. The interaction of electrical stimulated twitches and spontaneous contractile waves in single cardiac myocytes. J Gen Physiol 88: 615, 1986.PubMedCrossRefGoogle Scholar
  72. 72.
    Capogrossi MC, Stern MD, Spurgeon HA, Lakatta EG. Spontaneous Ca2+ release from the sarcoplasmic reticulum limits Ca2+-dependent twitch potential in individual cardiac myocytes: a mechanism for maximum inotropy in the myocardium. J Gen Physiol 91: 133, 1988.PubMedCrossRefGoogle Scholar
  73. 73.
    Kort AA, Lakatta EG. The relationship of spontaneous sarcoplasmic reticulum calcium release in twitch tension in rat and rabbit cardiac muscle. Circ Res 63: 969, 1988.PubMedGoogle Scholar
  74. 74.
    Kass RS, Tsien RW. Fluctuations in membrane current driven by intracellular calcium in cardiac Purkinje fibers. Biophys J 38: 259, 1982.PubMedCrossRefGoogle Scholar
  75. 75.
    Lederer WJ, Tsien RW. Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. J Physiol (Lond) 263: 73, 1976.Google Scholar
  76. 76.
    Ferrier GR, Saunders JH, Mendez CA. Cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthydine. Circ Res 32: 600, 1973.PubMedGoogle Scholar
  77. 77.
    Capogrossi MC, S. Houser, A. Bahinski, Lakatta EG. Synchronous occurrence of spontaneous localized calcium release from the sarcoplasmic reticulum generates action potentials in rat cardiac ventricular myocytes at normal resting membrane potential. Circ Res 61: 498, 1987.PubMedGoogle Scholar
  78. 78.
    Aronson RS. Afterpotentials and triggered activity in hypertrophied myocardium from rats with renal hypertension. Circ Res 48: 720, 1981.PubMedGoogle Scholar
  79. 79.
    Heller LJ. Augmented aftercontractions in papillary muscles from rats with cardiac hypertrophy, Am J Physiol 6: H649, 1979.Google Scholar
  80. 80.
    J. A. Shechter, Friehling TD, Uboh C, Kelliher GJ, O’Connor KM, Kowey PR. The effect of left ventricular hypertrophy on inducible ventricular arrhythmias. Circulation 70: II - 224, 1984.Google Scholar
  81. 81.
    January CT, Riddle JM, Salata JJ. A model for early afterdepolarizations: induction with the Ca2+ channel agonist Bay K 8644. Circ Res 62: 563, 1988.PubMedGoogle Scholar
  82. 82.
    Spurgeon HA, duBell W, Boyett M, Talo A, Capogrossi MC, Lakatta EG. Cytosolic Ca2+ modulation of membrane potential during a heart beat: perspectives from the single cardiac cell. J Mol Cell Cardiol 21: S-19, 1989.Google Scholar
  83. 83.
    Anversa P, Lond V, Giacomelli F, Weiner J. Absolute morphometric study of myocardial hypertrophy in experimental hypertension. II. Ultrastructure of myocytes and interstitium. Lab Invest 38: 597, 1978.PubMedCrossRefGoogle Scholar
  84. 84.
    Jacob R, Kissling G, Ebrecht G, Holubarsch C, Medugorac I, Rupp H. Adaptive and pathological alterations in experimental cardiac hypertrophy. In: Advances in Myocardiology, Volume IV, E. Chazov, V. Saks, and G. Rona (eds). New York: Plenum Publishing Co., p 55, 1983.Google Scholar
  85. 85.
    Alpert NR, Mulieri LA. Increased myothermal economy of isometrical force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. Characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res 50: 491, 1982.PubMedGoogle Scholar
  86. 86.
    Lecarpentier Y, Waldenstrom A, Clerque M, Chemia D, Oliviero P, Martin JL, Swynghedauw B. Major alterations in relaxation during cardiac hypertrophy induced by aortic stenosis in guinea pig. Circ Res 61: 107, 1987.PubMedGoogle Scholar
  87. 87.
    Ebrecht G, Rupp H, Gacob R. Alterations of mechanical parameters in chemically skinned preparations of rat myocardium as a function of isoenzyme pattern of myosin. Basic Res Cardiol 77: 220, 1982.PubMedCrossRefGoogle Scholar
  88. 88.
    Ventura-Clapier R, Mekhfi H, Oliviero P, Swynghedauw B. Pressure overload changes cardiac skinned-fiber mechanics in rats, not in guinea pigs. Am J Physiol 254: H517, 1988.PubMedGoogle Scholar
  89. 89.
    Henry PD, Ahumada GG, Friedman NF, Sobel BC. Simultaneously measured isometric tension and ATP hydrolysis in glycerinated fibres from normal and hypertrophied rabbit heart. Circ Res 31: 740, 1972.PubMedGoogle Scholar
  90. 90.
    Maughan D, Low E, Litten R, Brayden J, Alpert N. Calcium activated muscle from hypertrophied rabbit hearts. Mechanical and correlated biochemical changes. Circ Res 44: 279, 1979.PubMedGoogle Scholar
  91. 91.
    Scheuer J, Bhan AK. Cardiac contractile proteins. Adenosine triphosphatase activity and physiological function. Circ Res 45: 1, 1979.PubMedGoogle Scholar
  92. 92.
    Shiverick KT, Hamrell BB, Alpert NR. Structural and functional properties of myosin associated with the compensatory cardiac hypertrophy in the rabbit. J Mol Cell Cardiol 8: 837, 1976.PubMedCrossRefGoogle Scholar
  93. 93.
    Wisenbaugh T, Allen P, Copper G IV, et al. Hypertrophy without contractile dysfunction after reversal of pressure overload in the cat, Am JPhysiol 247: H146, 1984.Google Scholar
  94. 94.
    Afflitto JJ, Inchiosa MA Jr. Decrease in rat cardiac myosin ATPase with aortic constriction: prevention by thyroxine treatment. Life Sci 25: 353, 1979.PubMedCrossRefGoogle Scholar
  95. 95.
    Hoh JFY, Rossmanith GH. Ventricular isomyosins and the tonic regulation of cardiac contractility. In: Pat ho biology of Cardiovascular Injury, H.L. Stone and W.B. Weglicki (eds). Boston: Martinus Nijhoff, p 476, 1985.CrossRefGoogle Scholar
  96. 96.
    Mercadier J-J, Lompre A-M, Wisnewsky C, Samuel J-L, Bercovici J, Swynghedauw B, Schwartz K. Myosin isoenzymic changes in several models of rat cardiac hypertrophy. Circ Res 49: 525, 1981.PubMedGoogle Scholar
  97. 97.
    Scheuer J, Malhotra A, Hirsch G, Capasso J, Schaible TF. Physiologic cardiac hypertrophy corrects contractile protein abnormalities associated with pathologic hypertrophy in rats. J Clin Invest 70: 1300, 1982.PubMedCrossRefGoogle Scholar
  98. 98.
    Rupp H. The adaptive changes in the isoenzyme pattern of myosin from hypertrophied rat myocardium as a result of pressure overload and physical training Basic Res Cardiol 76: 79, 1981.PubMedCrossRefGoogle Scholar
  99. 99.
    Lompre AM, Schwartz K, Albis A, Lacombe G, Thiem NV, Swynghedauw B. Myosin isozymes redistribution in chronic heart overloading. Nature 282: 105, 1979.PubMedCrossRefGoogle Scholar
  100. 100.
    Mercadier J-J, Bouveret P, Gorza L, Schiaffino S, Clark WA, Zak R, Swynghedauw B, Schwartz K. Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ Res 53: 52, 1983.PubMedGoogle Scholar
  101. 101.
    Lompre AM, Mercadier JJ, Wisnewsky C, et al. Species-and age-dependent changes in relative amounts of cardiac myosin isozymes in mammals Dev Biol 84: 286, 1981.PubMedCrossRefGoogle Scholar
  102. 102.
    Gorza L, Mercadier JJ, Schwartz K, Thornell LE, Sartore S, Schiaffino S. Myosin types in the human heart. An immunofluorescence study of normal and hypertrophied atrial and ventricular myocardium. Circ Res 54: 694, 1984.PubMedGoogle Scholar
  103. 103.
    Julian FJ, Mogan DL, Moss RL, Gonzalez M, Dwivedi P. Myocyte growth without physiological impairment in gradually induced rat cardiac hypertrophy. Circ Res 49: 1300, 1981.PubMedGoogle Scholar
  104. 104.
    Lecarpentier YC, Chuck LHS, Housmans PR, DeClerck NM, Brutsaert DL. Nature of load dependence of relaxation in cardiac muscle. Am J Physiol 237: H460, 1979.Google Scholar
  105. 105.
    O’Rourke MF. Arterial Function in Health and Disease. New York: Churchill Livingstone, 1982.Google Scholar
  106. 106.
    Chevalier B, Mansier P, Amrani FC-E, Swynghedauw B. β- adrenergic system is modified in compensatory pressure cardiac overload in rats; physiological and biochemical evidence. J Cardiovasc Pharmac 13: 412, 1989.CrossRefGoogle Scholar
  107. 107.
    Mansier P, Chevalier B, Swynghedauw B. Characterization of the beta adrenergic system in adult rat hypertrophied hearts. J Mol Cell Cardiol 21: S-17, 1989.CrossRefGoogle Scholar
  108. 108.
    Ayobe HM, Tarazi CC. Reversal of changes in myocardial β-receptor and inotropic responsiveness with regression of cardiac hypertrophy in renal hypertensive rats (RHR). Circ Res 54: 125, 1984.PubMedGoogle Scholar
  109. 109.
    Gende OA, Mattiazzi A, Million MC, et al. Renal hypertension impairs inotropic isoproterenol effect without 0-receptor changes. Am J Physiol 249: 814, 1985.Google Scholar
  110. 110.
    Woodcock WA, Funder JW, Johnston CI. Decreased cardiac β- adrenergic receptors in deoxycorticosterone-salt and renal hypertensive rats. Circ Res 45: 560, 1979.PubMedGoogle Scholar
  111. 111.
    Schwartz K, Lompre AM, De la Bastie D, Mercadier JJ. Mechanogenic transduction in the hypertrophied heart. J Mol Cell Cardiol (Suppl III) 21: S-24, 1989.Google Scholar
  112. 112.
    Weber KT. Angiotensin II and myocardial remodeling, J Mol Cell Cardiol (Suppl III) 21: S-28, 1989.CrossRefGoogle Scholar
  113. 113.
    Fraticelli A, Josephson R, Danziger R, Lakatta E, Spurgeon H. Morphological and contractile characteristics of rat cardiac myocytes from maturation to senescence. Am J Physiol 257: H259, 1989.PubMedGoogle Scholar
  114. 114.
    Capasso JM, A. Malhorta, Remily RM, Scheuer J, Sonnenblick EH. Effects of age on mechanical and electrical performance of rat myocardium. Am J Physiol 245: H72, 1983.PubMedGoogle Scholar
  115. 115.
    Wei JY, Spurgeon HA, Lakatta EG. Excitation-contraction in rat myocardium: alterations with adult aging. Am J Physiol 246: 1 1784, 1984.Google Scholar
  116. 116.
    Orchard CH, Lakatta EG. Intracellular calcium transients and developed tensions in rat heart muscle. A mechanism for the negative interval-strength relationship. J Gen Physiol 86: 637, 1985.PubMedCrossRefGoogle Scholar
  117. 117.
    Lakatta EG, Yin FCP. Myocardial aging: Functional alterations and related cellular mechanisms, Am J Physiol 242: H927, 1982.PubMedGoogle Scholar
  118. 118.
    Alpert NR, Gale HH, Taylor N. The effect of age on contractile protein ATPase activity and the velocity of shortening. In: Factors influencing myocardial contractility, R.D. Tanz, F. Kavaler, and J. Roberts (eds). New York: Academic, p 127, 1967.Google Scholar
  119. 119.
    Effron MB, Bhatnagar GM, Spurgeon HA, Ruano-Arroyo G, Lakatta EG. Changes in myosin isoenzymes, ATPase activity, and contraction duration in rat cardiac muscle with aging can be modulated by thyroxine. Circ Res 60: 238, 1987.PubMedGoogle Scholar
  120. 120.
    Bhatnagar GM, Walford GD, Beard ES, Humphreys SH, Lakatta EG. ATPase activity and force production in myofibrils and twitch characteristics in intact muscle from neonatal, adult, and senescent rat myocardium. JMol Cell Cardiol 16: 203, 1984.CrossRefGoogle Scholar
  121. 121.
    Froehlich JP, Lakatta EG, E. Beard, Spurgeon HA, Weisfeldt ML, Gerstenblith G. Studies of sarcoplasmic reticulum function and contraction duration in young and aged rat myocardium. J Mol Cell Cardiol 10: 427, 1978.PubMedCrossRefGoogle Scholar
  122. 122.
    Guarnieri T, Filburn CR, Beard ES, Lakatta EG. Enhanced contractile response and protein kinase activation to threshold levels of β-adrenergic stimulation in hyperthyroid rat heart. J Clin Invest 65: 861, 1980.PubMedCrossRefGoogle Scholar
  123. 123.
    Lakatta EG, Gerstenblith G, Angell CS, Shock NW, Weisfeldt ML. Diminished inotropic response of aged myocardium to catecholamines. Circ Res 36: 262, 1975.PubMedGoogle Scholar
  124. 124.
    Lakatta EG, Gerstenblith G, Angell CS, Shock NW, Weisfeldt ML. Prolonged contraction duration in aged myocardium. J Clin Invest 55: 61, 1975.PubMedCrossRefGoogle Scholar
  125. 125.
    Spurgeon HA, Steinbach MF, Lakatta EG. Chronic exercise prevents characteristic age-related changes in rat cardiac contraction. Am J Physiol 244: H513 1983.PubMedGoogle Scholar
  126. 126.
    Walker KE, Lakatta EG, Houser SR. Calcium currents in senescent rat ventricular myocytes. Circulation 80: II - 142, 1989.Google Scholar
  127. 127.
    Narayanan N. Differential alterations in ATP-supported calcium transport activities of sarcoplasmic reticulum and sarcolemma of aging myocardium. Biochim Biophys Acta 678: 442 1981.PubMedCrossRefGoogle Scholar
  128. 128.
    Guarnieri T, Filburn CR, Zitnik G, Roth GS, Lakatta EG. Contractile and biochemical correlates of f3-adrenergic stimulation of the aged heart. Am J Physiol 239: H501, 1980.PubMedGoogle Scholar
  129. 129.
    Weisfeldt ML, Lakatta EG, Gerstenblith G. Aging and cardiac disease. In: Heart Disease: A Textbook of Cardiovascular Medicine, 3rd ed., E. Braunwald (ed). Philadelphia: W.B. Saunders, p 1650, 1988.Google Scholar
  130. 130.
    Sakai M, Danziger RS, Spurgeon HA, Lakatta EG. Decreased contractile response to norepinephrine with aging. Circulation 76: W-153, 1987.Google Scholar
  131. 131.
    Sakai M, Danziger RS, Staddon JM, Lakatta EG, Hansford RG. Decrease with senescence in the norepinephrine-induced phosphorylation of myofilament proteins in isolated rat cardiac myocytes. J Mol Cell Cardiol 21: 1327, 1989.PubMedCrossRefGoogle Scholar
  132. 132.
    Cooper G W, Mercer WE, Hoober JK, et al. Load regulation of the properties of adult feline cardiocytes. Role of substrate adhesion. Circ Res 58: 692, 1986.PubMedGoogle Scholar
  133. 133.
    Bauters C, Moalic J-M, Bercovici J, et al. Augmentation de l’expression des oncogenenes c-myc et c-fos en fonction de l’activite mecanique du coeur isole de rat adulte. CR Acad Sci Paris (Serie III ) 306: 597, 1988.Google Scholar
  134. 134.
    Watson PA, Haneda T, Morgan HE. Effect of higher aortic pressure on ribosome formation and cAMP content in rat heart. Am J Physiol 256: C1257, 1989.PubMedGoogle Scholar
  135. 135.
    Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an al-and ßl-adrenergic receptor interaction. Evidence for independent regulation of growth beating. Cire Res 56: 884, 1985.Google Scholar
  136. 136.
    Mann DL, Kent RL, Cooper G IV. Load regulation of the properties of adult feline cardiocytes: growth induction by cellular deformation. Circ Res 64: 1079, 1989.PubMedGoogle Scholar
  137. 137.
    Yazaki Y, Komuro I. Molecular analysis of cardiac hypertrophy due to overload. J Mol Cell Cardiol (suppl III) 21: S-29, 1989.CrossRefGoogle Scholar
  138. 138.
    Kent RL, Hoober JK, Cooper G W. Load responsiveness of protein synthesis in adult mammalian myocardium: role of cardiac deformation linked to sodium influx. Circ Res 64: 74, 1989.PubMedGoogle Scholar
  139. 139.
    Bauters C, Moalic JM, Bercovici J, et al. Coronary flow as a determinant of c-myc and c-fos proto-oncogene expression in an isolated adult rat heart. J Mol Cell Cardiol 20: 97, 1988.PubMedCrossRefGoogle Scholar
  140. 140.
    Lee HR, Henderson SA, Reynolds R, Dunnmon P, Yuan D, and Chien KR. α1-adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells. J Biol Chem 263: 7352, 1988.PubMedGoogle Scholar
  141. 141.
    Watkins SC, Samuel JL, Marotte F, Bertier-Savalle B, Rappaport L. Microtubules and desmin filaments during onset of heart hypertrophy in rat: a double immunoelectron microscope study. Circ Res 60: 327, 1987.PubMedGoogle Scholar
  142. 142.
    Von Harsdorf R, Lang RE, Fullerton M, Woodcock EA. Myocardial stretch stimulates phosphatidylinositol turnover. Circ Res 65: 494, 1989.Google Scholar
  143. 143.
    Craelius W, Chen V, El-Sherif N. Stretch activated ion channels in ventricular myocytes. Biosci Rep 8: 407, 1988.PubMedCrossRefGoogle Scholar
  144. 144.
    Delcayre C, Samuel J-L, Marotte F, Best-Belpomme M, Mercadier JJ, Rapport L. Synthesis of stress proteins in rat cardiac myocytes 24 days after imposition of hemodynamic overload. J Clin Invest 82: 460, 1988.PubMedCrossRefGoogle Scholar
  145. 145.
    Simpson PC. Molecular mechanisms in myocardial hypertrophy. Heart Failure 5: 113, 1989.Google Scholar
  146. 146.
    Hammon GL, Lai YK, Markert CL. Diverse forms of stress lead to new patterns of gene expression through a common and essential metabolic pathway. Proc Natl Acad Sci USA 79: 3485, 1982.CrossRefGoogle Scholar
  147. 147.
    Izumo S, Nadal-Ginard B, Mandavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA 85: 339, 1988.PubMedCrossRefGoogle Scholar
  148. 148.
    Simpson PC. Proto-oncogenes and cardiac hypertrophy. Annu Rev Physiol 51: 189, 1988.CrossRefGoogle Scholar
  149. 149.
    Mulvagh SL, Michael LH, Perryman MB, Roberts R, Schneider MD. A hemodynamic load in vivo induces cardiac expression of the cellular oncogene, c-myc. Biochem Biophys Res Commun 147: 627, 1987.PubMedCrossRefGoogle Scholar
  150. 150.
    Schwartz K, De la Bastie D, Bouveret P, Oliviero P, Alonso S, Buckingham M. α1 skeletal muscle actin mRNA’s accumulate in hypertrophied adult rat hearts. Circ Res 59: 551, 1986.PubMedGoogle Scholar
  151. 151.
    Seidman CE. Expression of atrial natriuretic factor in the normal and hypertrophied heart. Heart Failure 5: 130, 1989.Google Scholar
  152. 152.
    Day ML, D. Schwartz, Wiegand RC, Stockman PT, Brunnert SR, Tolunay HE, Currie MG, Standaert DG, Needleman P. Ventricular atriopeptin. unmasking of messenger RNA and peptide synthesis by hypertrophy or dexamethasone. Hypertension 9: 485, 1987.PubMedGoogle Scholar
  153. 153.
    Rappaport L, Contard F, Marotte F, Mebazza A, Delcayre C, Samuel JL. Regional distribution of growth signals, contractile and extracellular matrix proteins within myocardium following the imposition of a sudden pressure overload. J Mol Cell Cardiol (Suppl III) 21: S-22, 1989.Google Scholar
  154. 154.
    Schiaffino S, Samuel JL, D. Sassoon, et al. Non-synchronous accumulation of αl skeletal actin and β-myosin heavy chain mRNAs during early stages of pressure overload-induced cardiac hypertrophy demonstrated by in situ hybridization. Circ Res 64: 937, 1989.PubMedGoogle Scholar
  155. 155.
    Dillmann WH, Rohrer D, Maciel L. Age induced decrease in the mRNA coding for Ca++ ATPase of the sarcoplasmic reticulum of the rat heart. Clin Res 37: 516A, 1989.Google Scholar
  156. 156.
    Swynghedauw B. Remodeling of the heart in response to chronic mechanical overload. Eur Heart J 10: 935, 1989.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Edward G. Lakatta
    • 1
  1. 1.Laboratory of Cardiovascular Science Gerontology Research Center, National Institute on AgingNational Institutes of HealthBaltimoreUSA

Personalised recommendations