Advertisement

Regulation of Human Cardiac Myosin Heavy Chain Gene Expression by Thyroid Hormone

  • E. Morkin
  • J. G. Edwards
  • R. W. Tsika
  • J. J. Bahl
  • I. L. Flink
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 308)

Abstract

Rat cardiac myosin heavy chain (MHC) genes are regulated in ventricular myocardium by 3,5,3′-triiodo-L-thyronine (T3), which stimulates expression of the α-MHC gene and decreases β-MHC mRNA production (1,2). The protein products of the cardiac MHC genes combine to produce three heavy chain isoforms, V1(α,α), V2(α,β), and V3(β,β), in order of decreasing electrophoretic mobility and Ca2+-ATPase activity (3). The relative proportions of these isoforms may be functionally important because the speed of contraction in both cardiac and skeletal muscles has been shown to be related to myosin ATPase (4). Recently, some forms of familial hypertrophic cardiomyopathy have been reported to be linked directly to either a partial duplication of the cardiac MHC genes or to a missense mutation of the β-MHC gene (5,6)

Keywords

Thyroid Hormone Myosin Heavy Chain Thyroid Hormone Receptor Growth Hormone Gene Heavy Chain Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Everett AW, Sinha AM, Umeda PK, Jakovcic S, Rabinowitz M, Zak R. Regulation of myosin synthesis by thyroid hormone: relative change in the a-and 13-myosin heavy chain mRNA levels in rabbit heart. Biochemistry 23: 1596, 1984.PubMedCrossRefGoogle Scholar
  2. 2.
    Lompre A-M, Nadal-Ginard B, Mandavi V. Expression of the cardiac ventricular a-and 13-myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem 259: 6437, 1984.PubMedGoogle Scholar
  3. 3.
    Hoh JFY, McGrath PA, Hale PT. Electrophoretic analysis of multiple forms of cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 10: 1053, 1978.PubMedCrossRefGoogle Scholar
  4. 4.
    Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66: 710, 1986.PubMedGoogle Scholar
  5. 5.
    Tanigawa G, Jarcho JA, Kass S, Solomon SD, Vosberg H-P, Seidman JG, Seidman CE. A molecular basis for familial hypertrophic cardiomyopathy: An α/ß cardiac myosin heavy chain hybrid gene. Cell 62: 991, 1990.PubMedCrossRefGoogle Scholar
  6. 6.
    Geisterfer-Lowrance AAT, Kass S, Tanigawa G, Vosberg H-P, McKenna W, Seidman CE, Seidman JG. A molecular basis for familial hypertrophic cardiomyopathy: A ß cardiac myosin heavy chain missense mutation. Cell 62: 999, 1990.PubMedCrossRefGoogle Scholar
  7. 7.
    Oppenheimer JH, Schwartz HL, Mariash CN, Kinlaw WB, Wong NCW, Freafe HC. Advances in our understanding of thyroid hormone action at the cellular level. Endocrine Rev 8: 288, 1987.CrossRefGoogle Scholar
  8. 8.
    Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans R. The c-erb-A gene encodes a thyroid hormone receptor. Nature (Lond) 324: 641, 1986.CrossRefGoogle Scholar
  9. 9.
    Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennstrom B. The c-erbA protein is a high-affinity receptor for thyroid hormone. Nature (Lond) 324: 635, 1986.CrossRefGoogle Scholar
  10. 10.
    Mandavi V, Chambers AO, Nadal-Ginard B. Cardiac a and f3-myosin heavy chain genes are organized in tandem Proc Natl Acad Sci USA 81: 2626, 1984.CrossRefGoogle Scholar
  11. 11.
    Edwards JG, Morkin E. Unpublished observation.Google Scholar
  12. 12.
    Saez LJ, Gianola KM, McNally EM, Feghali R, Eddy R, Shows TB, Leinwand LA. Human cardiac myosin genes and their linkage in the genome. Nucleic Acids Res 15: 5443, 1987.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamauchi-Takihara K, Sole MJ, Liew J, Ing D, Liew CC. Characterization of human cardiac myosin heavy chain genes. Proc Natl Acad Sci USA 86: 3504, 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Tsika RW, Bahl JJ, Leinwand LA, Morkin E. Thyroid hormone regulates expression of a transfected human a-myosin heavy chain gene in fetal rat heart cells. Proc Natl Acad Sci USA 87: 379, 1990.PubMedCrossRefGoogle Scholar
  15. 15.
    Edwards JG, Flink IL, Bahl JJ, Liew CC, Sole MJ, Morkin E. Thyroid hormone regulates the expression of a transfected 13-myosin heavy chain gene in rat heart cells. Submitted for publication, 1991.Google Scholar
  16. 16.
    Tsika RW, Edwards JG, Bahl JJ, Morkin E. Regulation of human a-and I3-myosin heavy chain genes by thyroid hormone receptor isoforms in receptor deficient CV-1 cells and fetal rat cardiomyocytes. Submitted for publication, 1991.Google Scholar
  17. 17.
    Gustafson TA, Bahl JJ, Markham BE, Roeske WR, Morkin E. Hormonal regulation of myosin heavy chain and a-actin gene expression in cultured fetal rat heart myocyte. J Biol Chem 262: 13316, 1987.PubMedGoogle Scholar
  18. 18.
    Glass GK, Franco R, Weinberger C, Alpert VR, Evans RM, Rosenfeld MG. A c-erb-A binding site in rat growth hormone gene mediates trans-activation by thyroid hormone. Nature (London) 329: 738, 1987.CrossRefGoogle Scholar
  19. 19.
    Flink IL, Morkin E. Interaction of thyroid hormone receptors with strong and weak cis-acting elements in the human a-myosin heavy chain gene promoter. J Biol Chem 265: 1 1233, 1990.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • E. Morkin
    • 1
  • J. G. Edwards
    • 1
  • R. W. Tsika
    • 1
  • J. J. Bahl
    • 1
  • I. L. Flink
    • 1
  1. 1.Departments of Internal Medicine, Physiology and PharmacologyUniversity Heart Center Arizona Health Sciences CenterTucsonUSA

Personalised recommendations