Excitation-Contraction Coupling in the Heart

  • Harry A. Fozzard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 308)


Muscle contraction is the development of force or of motion by interaction of two complex proteins, actin and myosin. Their interaction results in relative translation of the thick (myosin) and thin (actin) filaments. The interaction is a chemical association between the head of the myosin molecule and the actin molecule, and force or motion results from a bending of the head where it joins the backbone of the myosin molecule. The chemical interaction itself is permitted as a consequence of a cascade of chemical events resulting from binding of Ca2+ to one of a heterotrimeric troponin complex. That interaction causes a change in a tropomyosin molecule, which releases actin sites for reaction with myosin.


Sarcoplasmic Reticulum Release Channel Myosin Molecule Potassium Contracture Tropomyosin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Niedergerke R. The potassium chloride contracture of the heart and its modification by calcium. J Physiol (Lond) 134: 569, 1956.Google Scholar
  2. 2.
    Hodgkin AL, Horowitz P. Potassium contractures in single muscle fibres. J Physiol (Lond) 153: 386, 1960.Google Scholar
  3. 3.
    Gibbons WR. Cellular control of cardiac contraction. In: The Heart and Cardiovascular System, H.A. Fozzard, E. Haber, R.B. Jennings, A.M. Katz, H.E. Morgan (eds). New York: Raven Press, pp 747–778, 1986.Google Scholar
  4. 4.
    Winegrad S. Membrane control of force generation. In: The Heart and Cardiovascular System, H.A. Fozzard, E. Haber, R.B. Jennings, A.M. Katz, H.E. Morgan (eds). New York: Raven Press, pp 703–730, 1986.Google Scholar
  5. 5.
    Bean B. Two kinds of calcium channels in canine atrial cells. J Gen Physiol 86: 1, 1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Mitra R, Morad M. Two types of calcium channels in guinea pig ventricular myocytes. Proc Natl Acad Sci 83: 5340, 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    Fozzard HA. Heart: excitation-contraction coupling. Ann Rev Physiol 39: 201, 1977.CrossRefGoogle Scholar
  8. 8.
    Morad M, Cleemann L. Role of Ca2+ channel in development of tension in heart muscle. J Mol Cell Cardiol 19: 527, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Fabiato A. Myoplasmic free calcium concentration. J Gen Physiol 78: 457, 1981.PubMedCrossRefGoogle Scholar
  10. 10.
    Nabauer et al 1989.Google Scholar
  11. 11.
    Valdeolmillos M, O’Neill SC, Smith GL, Eisner DA. Calcium-induced calcium release activates contraction in intact cardiac cells. Pflüegers Arch 413: 676, 1989.CrossRefGoogle Scholar
  12. 12.
    Cannell MB, Berlin JR, Lederer WJ. Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 238: 1419, 1987.PubMedCrossRefGoogle Scholar
  13. 13.
    Barcenas-Ruiz L, Beuckelmann DJ, Wier WG. Sodium-calcium exchange in heart: membrane currents and changes in [Ca2+]i. Science 238: 1720, 1987.PubMedCrossRefGoogle Scholar
  14. 14.
    Fabiato A. Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J Gen Physiol 85: 189, 1985.PubMedCrossRefGoogle Scholar
  15. 15.
    Campbell KP, Knodson CM, Imagawa T, Leung AT, Sutko JL, Kahl SD, Raab CR, Madson L. Identification and characterization of the high affinity ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J Biol Chem 262: 6460, 1987.PubMedGoogle Scholar
  16. 16.
    Smith JS, Coronado R, Meissner G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum: activation by Cat+, ATP and modulation by Mg2+. J Gen Physiol 88: 573, 1986.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith JS, Rousseau E, Meissner G. Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle. Circ Res 64: 352, 1989.PubMedGoogle Scholar
  18. 18.
    Rousseau E, Smith JS, Henderson JS, Meissner G. Single channel and Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel. Biophys J 50: 1009, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Reuter H, Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol (Lond) 195: 451, 1968.Google Scholar
  20. 20.
    Sheu S-S, Fozzard HA. Transmembrane Na+ and Cat + electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol 80: 325, 1982.PubMedCrossRefGoogle Scholar
  21. 21.
    Caroni P, Carifoli E. An ATP-dependent Ca2+-pumping system in dog heart sarcolemma. Nature 283: 765, 1980.PubMedCrossRefGoogle Scholar
  22. 22.
    Fozzard HA, Wasserstrom JA. Voltage dependence of intracellular sodium and control of contraction. In: Cardiac Electrophysiology and Arrhythmias. New York: Grune and Stratton, pp 31–57, 1985.Google Scholar
  23. 23.
    Im W-B, Lee CO. Quantitative relation of twitch and tonic tensions to intracellular Na+ activity in cardiac Purkinje fibers. Am J Physiol 247: C478, 1984.PubMedGoogle Scholar
  24. 24.
    Mullins LJ. Ion Transport in the Heart. New York: Raven Press, p 95, 1981.Google Scholar
  25. 25.
    Brill DM, Fozzard HA, Makielski JC, Wasserstrom JA. Effect of prolonged depolarizations on twitch tension and intracellular sodium activity in sheep cardiac Purkinje fibres. J Physiol (Lond) 384: 355, 1987.Google Scholar
  26. 26.
    Bassett AL, Gelband H. Chronic partial occlusion of the pulmonary artery in cats. Circ Res 32: 15, 1973.PubMedGoogle Scholar
  27. 27.
    Kleinman RB, Hauser SR. Calcium currents in normal and hypertrophied isolated feline ventricular myocytes. Am J Physiol 255: H1434, 1988.Google Scholar
  28. 28.
    Keung EC. Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res 64: 753, 1989.PubMedGoogle Scholar
  29. 29.
    Gwathmey JK, Morgan JP. Altered calcium handling in experimental pressure-overload hypertrophy in the ferret. Circ Res 57: 836, 1985.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Harry A. Fozzard
    • 1
  1. 1.Cardiac Electrophysiology Laboratories, Departments of Medicine and the Pharmacological & Physiological Sciences and the Committee on Cell PhysiologyThe University of ChicagoChicagoUSA

Personalised recommendations