Advertisement

Regulation of Ionic Channels by G Proteins

  • A. M. Brown
  • A. Yatani
  • G. Kirsch
  • A. M. J. VanDongen
  • B. Schubert
  • J. Codina
  • L. Birnbaumer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 308)

Abstract

Signals may flow through membranes by a pathway composed of three elements: receptor, G protein and effector. At present we know of about 80 different receptors, about 15 different G proteins and about 15 different effectors (1,2). The primary structures of noradrenergic, dopamine, 5-hydroxytryptamine and rhodopsin receptors are similar indicating that the receptors form a family (2). The predicted secondary structures have seven membrane spanning a helices with the greatest differences among receptors occurring in the cytoplasmic linkers (3). The G proteins also form a family in which heterogeneity resides largely in the a subunits for which some 15 different cDNAs have been described (4,2). Two to four forms of the β subunit have been described and there are at least three forms of the y subunit (4,2). By contrast, the effectors are quite different from each other and there appears to be no homology among adenylyl cyclase (AC) (4), cGMP phosphodiesterase (PDE) and voltage-dependent ionic channels (5,6), although the predicted secondary structures of AC and voltage-gated channels are similar. Within this group, voltage-gated channels clearly are a family (7).

Keywords

Adenylyl Cyclase Guanine Nucleotide Planar Lipid Bilayer Single Channel Current Protein Gating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birnbaumer L, Codina J, Mattera R, Yatani A, Scherer N, Toro M-J, and Brown AM. Signal transduction by G proteins. Kidney Intl 32: S14, 1987.Google Scholar
  2. 2.
    Birnbaumer L, Codina J, Yatani A, Mattera R, Graf R, Olage J, Themmen APN, Liao C-F, Sanford J, Okabe K, Imoto Y, Zhou Z, Abramowitz J, Suki WN, Hamm HE, Iyengar R, Birnbaumer M, and Brown AM. Molecular basis of regulation of ionic channels by G proteins. In: Recent Progress in Hormone Research, Vol. 45, New York: Academic Press, p 121, 1989.Google Scholar
  3. 3.
    Lefkowitz Rd and Caron MG. Adrenergic receptors. J Biol Chem 263: 9887, 1988.Google Scholar
  4. 4.
    Gilman AG. G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615, 1987.PubMedCrossRefGoogle Scholar
  5. 5.
    Frech GC, VanDongen AMJ, Schuster G, Brown AM, Joho RH. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340: 642, 1989.PubMedCrossRefGoogle Scholar
  6. 6.
    Perez-Reyes E, Kim HS, Lacerda AE, Horne W, Wei X, Rampe D, Campbell KP, Brown AM, Birnbaumer L. Induction of calcium currents by the expression of the al-subunit of the dihydropyridine receptor from skeletal muscle. Nature 340: 233, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Numa S, Noda M. Molecular structure of sodium channels. Ann New York Acad Sci 479: 338, 1986.CrossRefGoogle Scholar
  8. 8.
    Brown AM, Birnbaumer L. Direct G protein gating of ion channels. Am J Physiol 23: H401, 1988.Google Scholar
  9. 9.
    Yatani A, Brown AM. Rapid ß-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science 245: 71, 1989.PubMedCrossRefGoogle Scholar
  10. 10.
    Schubert B, VanDongen AMJ, Kirsch GE, Brown AM. 13-adrenergic inhibition of cardiac sodium channels by dual G protein pathways. Science 245: 516, 1989.PubMedCrossRefGoogle Scholar
  11. 11.
    Yatani A, Codina J, Brown AM, Birnbaumer L. Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein, Gk. Science 235: 207, 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE. G protein beta gamma-subunits activate the cardiac muscarinic K+ channel via phospholipase A2. Nature 337: 557, 1989.PubMedCrossRefGoogle Scholar
  13. 13.
    Kurachi Y, Itoh H, Sugimoto T, Shimizu T, Miki I, Ui M. Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel. Nature 337: 555, 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Brown AM, Birnbaumer L. Ionic channels and their regulation by G protein subunits. Ann Rev Physiol 52: 197, 1990.CrossRefGoogle Scholar
  15. 15.
    Glitsch HG, Pott L. Effects of acetylcholine and parasympathetic nerve stimulation on membrane potential in quiescent guinea pig atria. J Physiol (Lond) 279: 655, 1978.Google Scholar
  16. 16.
    Hill-Smith I, Purves RD. Synaptic delay in the heart: an ionophoretic study. J. Physiol. (Lond) 279: 31, 1978.Google Scholar
  17. 17.
    Trautwein W, Taniguchi J, Noma A. The effect of intracellular cyclic nucleotides and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflügers Arch 392: 307, 1982.PubMedCrossRefGoogle Scholar
  18. 18.
    Nargeot J, Nerbonne JM, Engels J, Lester HA. Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cAMP. Proc Natl Acad Sci USA 80: 2395, 1983.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenberg RL, Hess P, Reeves JP, Smilowitz H, Tsien RW. Calcium channels in planar lipid bilayers: insights into mechanisms of ion permeation and gating. Science 231: 1564, 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Rosenberger LB, Roeske WR, Yamamura HI. The regulation of muscarinic cholinergic receptors by guanine nucleotides in cardiac tissue. Eur J Pharmacol 56: 179, 1979.PubMedCrossRefGoogle Scholar
  21. 21.
    Hazeki O, Ui M. Modification by islet-activating protein of receptor-medicated regulation of cAMP accumulation in isolated rat heart cells. J Biol Chem 256: 2856, 1981.PubMedGoogle Scholar
  22. 22.
    Kurose H, Ui M. Functional uncoupling of muscarinic receptors from adenylate cyclase in rat cardiac membranes by the active component of islet-activating protein, pertussis toxin. J Cyclic Nucleotide Protein Phosphorylation Res 9: 305, 1983.Google Scholar
  23. 23.
    Halvorsen SW, Nathanson NM. Ontogenesis of physiological responsiveness and guanine nucleotide sensitivity of cardiac muscarinic receptors during chick embryonic development. Biochemistry 23: 5813, 1984.PubMedCrossRefGoogle Scholar
  24. 24.
    Sakmann B, Noma A, Trautwein W. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart Nature 303: 250, 1983.PubMedCrossRefGoogle Scholar
  25. 25.
    Soejima M, Noma A. Mode of regulation of the ACh-sensitive K channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 400: 424, 1984.PubMedCrossRefGoogle Scholar
  26. 26.
    Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317: 536, 1985.PubMedCrossRefGoogle Scholar
  27. 27.
    Breitwieser GE, Szabo G. Uncoupling of cardiac muscarinic and f3- adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317: 538, 1985.PubMedCrossRefGoogle Scholar
  28. 28.
    Kurachi Y, Nakajima T, Sugimoto T. On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflügers Arch 407: 264, 1986.PubMedCrossRefGoogle Scholar
  29. 29.
    Kurachi Y, Nakajima T, Sugimoto T. Role of intracellular Mgt+ in the activation of muscarinic K+ channel in cardiac atrial cell membrane. Pflügers Arch 407: 572, 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Kurachi Y, Nakajima T, Sugimoto T. Acetylcholine activation of K+ channels in cell-free membrane of atrial cells. Am J Physiol 251: H681, 1986.PubMedGoogle Scholar
  31. 31.
    Codina J, Hildebrandt JD, Iyengar R, Birnbaumer L, Sekura RD, Manclark CR. Pertussis toxin substrate, the putative Ni of adenylyl cyclases, is an a/ß heterodimer regulated by guanine nucleotide and magnesium. Proc Natl Acad Sci USA 80: 4276, 1983.PubMedCrossRefGoogle Scholar
  32. 32.
    Codina J, Hildebrandt JD, Sekura RD, M. Birnbaumer, Bryan J, Manclark CR, Iyengar R, Birnbaumer L. NS and Ni, the stimulatory and inhibitory regulatory components of adenylyl cyclases. Purification of the human erythrocyte proteins without the use of activating regulatory ligands. J Biol Chem 259: 5871, 1984.PubMedGoogle Scholar
  33. 33.
    Codina J, Hildebrandt JD, Birnbaumer L, Sekura RD. Effects of guanine nucleotides and Mg on human erythrocyte Ni and N5f the regulatory components of adenylyl cyclase. J Biol Chem 259: 1 1408, 1984.Google Scholar
  34. 34.
    Yatani A, Codina J, Brown AM, Birnbaumer L. Direct activation of mammalian atrial muscarinic K channels by a human erythrocyte pertussis toxin-sensitive G protein, Gk. Science 235: 207, 1987.PubMedCrossRefGoogle Scholar
  35. 35.
    Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L. The a subunit of Gk opens atrial potassium channels. Science 236: 442, 1987.PubMedCrossRefGoogle Scholar
  36. 36.
    Hamm HE, Deretic D, Hofmann KP, Schleicher A, Kohl B. Mechanism of action of monoclonal antibodies that block the light-activation of guanyl nucleotide binding protein, transducin. J Biol Chem 262: 10831, 1988.Google Scholar
  37. 37.
    Deretic D, Hamm HE. Topographic analysis of antigenic determinations recognized by monoclonal antibodies to the photoreceptor guanyl nucleotide binding protein, transducin. J Biol Chem 262: 10839, 1988.Google Scholar
  38. 38.
    Yatani A, Hamm H, Codina J, Mazzoni MR, Birnbaumer L, Brown AM. A monoclonal antibody to the a-subunit of Gk blocks muscarinic activation of atrial K+ channels. Science 241: 828, 1988.PubMedCrossRefGoogle Scholar
  39. 39.
    Logothetis DE, Kim D, Northup JK, Neer EJ, Clapham E. Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel. Proc Natl Acad Sci USA 85: 5814, 1988.PubMedCrossRefGoogle Scholar
  40. 40.
    Neer EJ, Clapham DC. Role of G protein subunits in transmembrane signalling. Nature 333: 129, 1988.PubMedCrossRefGoogle Scholar
  41. 41.
    Cerbai E, Kloeckner U, Isenberg G. The a-subunit of the GTP binding protein activates muscarinic potassium channels of the atrium. Science 240: 1782, 1988.PubMedCrossRefGoogle Scholar
  42. 42.
    Piomelli D, Volterra A, Dale N, Siegelbaum SA, Kandel ER, Schwartz JH, Belardetti F. Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory neurons. Nature 328: 38, 1987.PubMedCrossRefGoogle Scholar
  43. 43.
    Okabe K, Yatani A, Evans T, Codina J, Birnbaumer L, Brown AM. ßy-subunits of G proteins inhibit muscarinic K+ channels in heart. J Biol Chem, submitted, 1989.Google Scholar
  44. 44.
    Birnbaumer L, Yatani A, Codina J, Mattera R, Graf R, Liao C-F, Themmen A, Sanford J, Hamm H, Iyenger R, Birnbaumer M, Brown AM. Signal transduction by G proteins: Regulation of ion channels as seen with native and recombinant subunits and multiplicity of intramembrane transduction pathways. In: The Molecular and Cellular Endocrinology of the Testis, Cook BA and Sharpe RM (eds), New York: Raven Press, 1988, p 35.Google Scholar
  45. 45.
    Mattera R, Yatani A, Kirsch GE, Graf R, Olate J, Codina J, Brown AM, Birnbaumer L. Recombinant a-3 subunit of CT protein activates Tk-gated K+ channels. J Biol Chem 264: 465, 1989.PubMedGoogle Scholar
  46. 46.
    Graziano MP, Casey PJ, Gilman AG. Expression of cDNAs for G proteins in Escherichia coli, two forms of Gsa stimulate adenylate cyclase. J Biol Chem 262: 1 1375, 1987.Google Scholar
  47. 47.
    Yatani A, Imoto Y, Codina J, Hamilton S, Brown AM, Birnbaumer L. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Cat+ channels: evidence for direct regulation independent of phosphorylation. J Biol Chem 263: 9887, 1988.PubMedGoogle Scholar
  48. 48.
    Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM. Direct regulation of mammalian cardiac calcium channels by a G protein. Science 238: 1288, 1987.PubMedCrossRefGoogle Scholar
  49. 49.
    Imoto Y, Yatani A, Reeves JP, Codina J, Birnbaumer L, Brown AM. The a-subunit of Gs directly activates cardiac calcium channels in lipid bilayers. Am J Physiol 255: H722, 1988.PubMedGoogle Scholar
  50. 50.
    Triggle DJ, Skattebol A, Rampe D, Joclyn A, Gengo P. Chemical pharmacology of Cat+ channel ligands. In: New Insights into Cell and Membrane Transport Processes, Poste G and Crooke ST (eds), New York: Plenum Publishing, pp 125, 1986.CrossRefGoogle Scholar
  51. 51.
    Galizzi J-P, Fossett M, Lazdunski M. Properties of receptors for the Cat+ channel blocker verapamil in transverse-tubule membranes of skeletal muscle. Eur J Biochem 144: 211, 1984.PubMedCrossRefGoogle Scholar
  52. 52.
    Lewis DL, Weight FF, Luini A. A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc Natl Acad Sci USA 83: 9035, 1986.PubMedCrossRefGoogle Scholar
  53. 53.
    Holz GG IV, Rane S.G., Dunlap K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319: 670, 1986.PubMedCrossRefGoogle Scholar
  54. 54.
    Scott RH, Dolphin AC. Regulation of calcium currents by a GTP analogue: potentiation of (-)baclofen-mediated inhibition. Neurosci Lett 69: 59, 1986.PubMedCrossRefGoogle Scholar
  55. 55.
    Dolphin AC, Scott RH. Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurones: modulation by guanine nucleotides. J Physiol 386: 1, 1987.PubMedGoogle Scholar
  56. 56.
    Hescheler J, Rosenthal W, Trautwein W, Schultz G. The GTPbinding protein, Go, regulates neuronal calcium channels. Nature 325: 445, 1987.PubMedCrossRefGoogle Scholar
  57. 57.
    Rane SO, Dunlap K. Kinase C activator 1,2-oleylacetyl-glycerol attenuates voltage-dependent calcium current in sensory neurones. Proc Natl Acad Sci USA 83: 184, 1986.PubMedCrossRefGoogle Scholar
  58. 58.
    Kameyama M, Hofmann F, Trautwein W. On the mechanism of ßadrenergic regulation of the Ca channel in the guinea pig heart. Pflügers Arch 405: 285, 1985.PubMedCrossRefGoogle Scholar
  59. 59.
    Kameyama M, Hescheler J, Hofmann F, Trautwein W. Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch 407: 123, 1986.PubMedCrossRefGoogle Scholar
  60. 60.
    Ma J, Coronado R. Heterogeneity of conductance states in calcium channels of skeletal muscle. Biophys J 53: 387, 1988.PubMedCrossRefGoogle Scholar
  61. 61.
    Cota G, Stefani E. A fast-activated inward calcium current in twitch muscle fiber of the frog (Rana Montezume). J Physiol (Lund) 370: 151, 1986.Google Scholar
  62. 62.
    Caffrey J, Brown AM, Schneider MD. Mitogens and oncogenes can block the induction of specific voltage-gated ion channels. Science 236: 570, 1987.PubMedCrossRefGoogle Scholar
  63. 63.
    Affolter H, Coronado R. Agonists Bay-K8644 and CGP-28392 open calcium channels reconstituted from skeletal muscle transverse tubules. Biophys J 48: 341, 1985.PubMedCrossRefGoogle Scholar
  64. 64.
    Stryer L. Cyclic GMP cascade of vision. Ann Rev Neurosci 9: 87, 1986.PubMedCrossRefGoogle Scholar
  65. 65.
    Fesenko EE, Kolesnikov SS, Lyubarsky AL. Induction by cyclic GMP of cationic conductance in plasma membrane rod outer segment. Nature 313: 310, 1985.PubMedCrossRefGoogle Scholar
  66. 66.
    Haynes L, Yau KW. Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones. Nature 317: 61, 1985.PubMedCrossRefGoogle Scholar
  67. 67.
    Mathews G. Single channel recordings demonstrate that cGMP opens the light sensitive ion channel of the rod photoreceptor. Proc Natl Acad Sci USA 84: 299, 1987.CrossRefGoogle Scholar
  68. 68.
    Flockerzi V, Oeken HJ, Hofmann F, Pelzer D, Cavalie A, Trautwein W. Purified dihydropyridine-binding site from rabbit skeletal muscle t-tubules is a functional calcium channel. Nature 323: 66, 1987.CrossRefGoogle Scholar
  69. 69.
    Dunlap K, Holz GG, Rane SG. G proteins as regulators of ion channel function. TINS 10: 241, 1987.PubMedGoogle Scholar
  70. 70.
    Berridge MJ, Irvine RF. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315, 1984.PubMedCrossRefGoogle Scholar
  71. 71.
    Petersen OH. Calcium channels. Nature 336: 528, 1988.PubMedCrossRefGoogle Scholar
  72. 72.
    Soejima M, Noma A. Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 400: 424, 1984.PubMedCrossRefGoogle Scholar
  73. 73.
    Kirsch GE, Codina J, Birnbaumer L, Brown AM. Coupling of ATP-sensitive K+ channels to Al receptors by G proteins in rat ventricular myocytes. Am J Physiol, 259: H820, 1990.PubMedGoogle Scholar
  74. 74.
    Ramos-Franco J, Toro L, Stefani E. GTPyS enhances the opening probability of Kca channels from myometrium incorporated into bilayers. Biophys J 55: 536a, 1989.Google Scholar
  75. 75.
    Scott RH, Dolphin AC, Wooton JF. Photorelease of GTPyS inhibits T-type calcium channel currents in rat dorsal root ganglion neurons. Biophys J 55: 37a, 1986.Google Scholar
  76. 76.
    DiFrancesco D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324: 470, 1986.PubMedCrossRefGoogle Scholar
  77. 77.
    Kirsch GE, Yatani A, Codina J, Birnbaumer L, Brown AM. The a subunit of Gk activates atrial K+ channels of embryonic chick, neonatal rat and adult guinea pig. Am J Physiol 23: H1200, 1988.Google Scholar
  78. 78.
    Yatani A, Mattera R, Codina J, Graf R, Okabe K, Padrell E, Iyengar R, Brown AM, Birnbaumer L. The G protein-gated atrial K+ channel is stimulated by three distinct Giâ subunits. Nature 336: 680, 1988.PubMedCrossRefGoogle Scholar
  79. 79.
    Yatani A, Codina J, Sekura RD, Birnbaumer L, Brown AM. Reconstitution of somatostatin and muscarinic receptor mediated stimulation of K+ channels by isolated Gk protein in clonal rat anterior pituitary cell membranes. Mol Endo 1: 283, 1987.CrossRefGoogle Scholar
  80. 80.
    Codina J, Grenet G, Yatani A, Birnbaumer L, Brown AM. Hormonal regulation of pituitary GH3 cell K+ channels by Gk is mediated by its alpha subunit. FEBS Letts 216: 104, 1987.CrossRefGoogle Scholar
  81. 81.
    VanDongen T, Codina J, Olate J, Mattera R, Joho R, Birnbaumer L, Brown AM. Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science 242: 1433, 1988.PubMedCrossRefGoogle Scholar
  82. 82.
    Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM. A G protein directly regulates mammalian cardiac calcium channels. Science 238: 1288, 1987.PubMedCrossRefGoogle Scholar
  83. 83.
    Trautwein W, Cavalie A, Allen TJA, Shuba YM, Pelzer S, Pelzer D. Direct and indirect regulation of cardiac L-type calcium channels by a-adrenoreceptor agonists. In: Advances in Second Messenger and Phosphoprotein Research, Nishizuka Y. (ed), New York: Raven Press, In Press, 1990.Google Scholar
  84. 84.
    Hesslinger B, McDonald TF, Pelzer D, Shuba Y, Trautwein W. Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J Physiol, In Press, 1990.Google Scholar
  85. 85.
    Light DB, Ausiello D, Stanton BA. Guanine nucleotide-binding protein, a-3 directly activates a cation channel in rat renal inner medullary collecting duct cells. J Clin Invest, 84: 352, 1989.PubMedCrossRefGoogle Scholar
  86. 86.
    Schwiebert EM, Light DB, Stanton BA. A G protein, G;-3, regulates a chloride channel in renal cortical collecting duct cells. J Gen Physiol 94: 6a, 1989.Google Scholar
  87. 87.
    Ribalet B, Ciani S, Eddlestone GT. Modulation of ATP-sensitive K channels in RINm5F cells by phosphorylation and G proteins. Biophys J 55: 587a, 1989.Google Scholar
  88. 88.
    Parent L, Coronado R. Reconstitution of the ATP-sensitive potassium channel of skeletal muscle. Activation by a G protein-dependent process. J Gen Physiol 94: 445, 1989.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. M. Brown
    • 1
  • A. Yatani
    • 1
  • G. Kirsch
    • 1
  • A. M. J. VanDongen
    • 1
  • B. Schubert
    • 1
  • J. Codina
    • 2
  • L. Birnbaumer
    • 1
    • 2
  1. 1.Departments of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUSA
  2. 2.Departments of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations