A Consensus Template for the Aspartic Proteinase Fold

  • Natalia S. Andreeva
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)


Domains of aspartic proteinase molecules have the same fold (Tang et al., 1978) while their primary structures show no homology except small segments of a few amino acid residues located in the region of the active site in the three-dimensional structure. One may ask: is it possible to detect a common specific property of amino acid sequences of both domains which can explain the tendency of their chains to fold by the same manner? In other words does a consensus template for the specific aspartic proteinase fold exist? Interactions between different segments of a polypeptide chain providing formation of a central hydrophobic core of a protein molecule determine mainly the geometrical type of protein folding. If a consensus template for the specific aspartic proteinase fold really exists it must concern the formation of central hydrophobic cores in domains.


Hydrophobic Residue Aspartic Proteinase Align Amino Acid Sequence Template Region Bovine Chymosin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreeva, N., 1988, “Structure and Biosynthesis of Proteins (Puschino),” 3: 97–115.Google Scholar
  2. Azuma, T., Pals, G., Mohandas, T. K., Couvreur, J. M. & Taggart, R. T., 1989, J. Biol. Chem. 264: 16748–16753.PubMedGoogle Scholar
  3. Doolittle, R. F., Feng, D. F., Johnson, M. S. & McClure, M. A., 1989, Quarterly Review of Biology 64: 1–30.PubMedCrossRefGoogle Scholar
  4. Foltmann, B., 1988, in: “Abstracts of 18th Linderstrøm-Lang Conference” pp.7–20.Google Scholar
  5. Jaskólski, M., Miller, M., Rao, M. J. K., Leis, J. & Wlodawer, A., 1990, Biochemistry 29: 5889–5898.PubMedCrossRefGoogle Scholar
  6. Kobayashi, H., Sekibata, S., Shibuya, H., Yoshida, S., Kusakabe, I. & Murakami, K., 1989, Agric. Biol. Chem. 53: 1927–1933.CrossRefGoogle Scholar
  7. Örd, T., Kolmer, M., Villems, R. & Saarma, M., 1990, Gene 91: 241–246.PubMedCrossRefGoogle Scholar
  8. Pechik, I. V., Gustchina, A. E., Andreeva, N. S. & Fedorov, A. A., 1988, “Structure and Biosynthesis of Proteins (Pustchino),” 3: 87–96.Google Scholar
  9. Pechik, I. V., Guschina, A. E., Andreeva, N. S. & Fedorov, A. A., 1989, FEBS Lettr. 247: 118–122.CrossRefGoogle Scholar
  10. Pearl, L. & Taylor, W., 1987, Nature (London) 329: 351–354.CrossRefGoogle Scholar
  11. Sibanda, B. L. & Thornton, J. M., 1985, Nature (London) 316: 170–174.CrossRefGoogle Scholar
  12. Sielecki, A. R., Fedorov, A. A., Bodhoo, A., Andreeva, N. S. & James, M. N. G., 1990, J. Mol. Biol. 214: 143–170.PubMedCrossRefGoogle Scholar
  13. Tang, J., James, M. N. G., Hsu, I.-N., Jenkins, J. A. & Blundell, T. L., 1978, Nature (London) 271: 618–621.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Natalia S. Andreeva
    • 1
  1. 1.V. A. Engelhardt Institute of Molecular BiologyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations