Advertisement

Theoretical Models of Aspartic Proteases: Active Site Properties, Dimer Stability and Interactions with Model Inhibitors

  • Anwar Rayan
  • Amit Fliess
  • Moshe Kotler
  • Michael Chorev
  • Amiram Goldblum
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)

Abstract

HIV-1 PR, an aspartic proteinase (AP), is recognized now as an important target for designing effective and selective drugs which could arrest the late stages in replication of HIV-1, the causative agent of AIDS.1 Selectivity of such enzyme inhibitors is required in addition to high affinity. The most spectacular difference between HIV-1 PR, a retroviral enzyme, and the cellular AP, is the smaller size and dimeric structure of the former. The conservation of active site residues, Asp-Thr/Ser-Gly, seems to eliminate the ability to design selective active-site inhibitors for AP.2 This is, however, achieved by accumulated experience with the construction of novel renin inhibitors.

Keywords

Active Site Residue Aspartic Proteinase Model Inhibitor Renin Inhibitor Dime Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Mitsuya, R. Yarchoan and S. Broder, Science 249: 1533 (1990).PubMedCrossRefGoogle Scholar
  2. 2.
    I. T. Weber, J. Biol. Chem. 265: 10492 (1990).PubMedGoogle Scholar
  3. 3.
    A. Goldblum, Biochem. Biophys. Res. Comm. 157: 450 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Goldblum, FEBS Lett. 261: 241 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Miller, J. Schneider, B. K. Sathyanarayana, M. V. Toth, G. R. Marshall, L. Clawson, L. Selk, S. B. H. Kent and A. Wlodawer, Science 246: 1149 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Lapatto, T. Blundell, A. Hemmings, J. Overington, A. Wilderspin, S. Wood, J. R. Merson, P. J. Whittle, D. E. Danley, K. F. Geoghegan, S. J. Hawrylik, S. E. Lee, K. G. Scheid and P. M. Hobart, Nature 342: 299 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Pearl and T. L. Blundell, FEBS Lett. 174: 96 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Suguna, E. A. Padlan, C. W. Smith, W. D. Carlson and D. R. Davies, Proc. Nat. Acad. Sci. U.S.A. 84: 7009 (1987).CrossRefGoogle Scholar
  9. 9.
    M. N. G. James and A. R. Sielecki, J. Mol. Biol. 163: 299 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Goldblum, J. Comp. Chem. 8: 835 (1987).CrossRefGoogle Scholar
  11. 11.
    E. L. Mehler, Protein Engng. 3: 415 (1990).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Anwar Rayan
    • 1
  • Amit Fliess
    • 1
  • Moshe Kotler
    • 2
  • Michael Chorev
    • 1
  • Amiram Goldblum
    • 1
  1. 1.Department of Pharmaceutical Chemistry, School of PharmacyHebrew University of JerusalemJerusalemIsrael
  2. 2.Department of Molecular Genetics, School of MedicineHebrew University of JerusalemJerusalemIsrael

Personalised recommendations