Advertisement

Cleavage of the Intermediate Filament Subunit Protein Vimentin by HIV-1 Protease: Utilization of a Novel Cleavage Site and Identification of Higher Order Polymers of Pepstatin A

  • Robert L. Shoeman
  • Bernd Höner
  • Timothy J. Stoller
  • Elfriede Mothes
  • Cornelia Kesselmeier
  • Peter Traub
  • Mary C. Graves
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)

Abstract

Intermediate filaments (IFs) are important constituents of the eukaryotic cell cytoskeleton. They are 10-12 nm in diameter and are composed of one or more of over 40 different subunit proteins, belonging to 5 classes of cytoplasmic and 1 class of nuclear proteins (the lamins). These proteins all possess a central rod domain, with a highly conserved amino acid sequence, which allow the IF proteins to form dimers through coiled coil interactions (much like myosin). These dimers, in turn, can polymerize into higher order structures which culminate in the final 10 nm filaments. As reviewed by Traub (1985) and Steinert and Roop (1988), much is known about the physical chemistry, molecular biology and tissue specific distribution of IF proteins; disappointingly little is known about their cellular functions. In addition to their role as cytoskeletal elements, it has been proposed that IF proteins may also participate in regulating expression of genetic information (Traub et al., 1987; Chan et al., 1989), although definitive proof of this role is still lacking.

Keywords

Human Immunodeficiency Virus Type Intermediate Filament Equine Infectious Anemia Virus Conserve Amino Acid Sequence Tail Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boucher, C. A. B., de Jager, M. H., Debouck, C., Epstein, L. G., de Wolf, F., Wolfs, T. F. W. & Goudsmit, J., 1989, Antibody response to human immunodeficiency virus type 1 protease according to risk group and disease stage, J. Clin. Microbiol. 27: 1577.PubMedGoogle Scholar
  2. Chan, D., Goate, A. & Puck T. T., 1989, Involvement of vimentin in the reverse transformation reaction, Proc. Natl. Acad. Sci. U.S.A. 86: 2747.PubMedCrossRefGoogle Scholar
  3. Göttlinger, H. G., Sodroski, I. G. & Haseltine, W. A., 1989, Role of capsid precursor processing and myristylation in morphogenesis and infectivity of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. U.S.A. 86: 5781.PubMedCrossRefGoogle Scholar
  4. Henderson, L. E., Benveniste, R. E., Sowder, R., Copeland, T. D., Schultz, A. M. & Oroszlan, S., 1988, Molecular characterization of gag proteins from simian immunodeficiency virus (SIVMne), J. Virol. 62: 2587.PubMedGoogle Scholar
  5. Kaufmann, E., Weber, K. & Geisler, N., 1985, Intermediate filament forming ability of desmin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues, J. Mol. Biol. 185: 733.PubMedCrossRefGoogle Scholar
  6. Mangeat, P. H., 1988, Interaction of biological membrane with the cytoskeletal framework of living cells, Biol. Cell. 64: 261.PubMedCrossRefGoogle Scholar
  7. Mothes, E., Shoeman, R. L., Schröder, R. R. & Traub, P., 1990, Polymerizing properties of pepstatin A, J. Struct. Biol. 105: 80.PubMedCrossRefGoogle Scholar
  8. Mothes, E., Shoeman, R. L. & Traub, P., 1991, Effect of pepstatin A on structure and polymerization of intermediate filament subunit proteins in vitro, J. Struct. Biol. 106: 64.PubMedCrossRefGoogle Scholar
  9. Peng, C., Ho, B. K., Chang, T. W. & Chang, N. T., 1989, Role of human immunodeficiency virus type 1 specific protease in core protein maturation and viral infectivity, J. Virol. 63: 2550.PubMedGoogle Scholar
  10. Roberts, M. M. & Oroszlan, S., 1989, The preparation and biochemical characterization of intact capsids of equine infectious anemia virus, Biochem. Biophys. Res. Commun. 160: 486.PubMedCrossRefGoogle Scholar
  11. Shoeman, R. L., Höner, B., Stoller, T. J., Kesselmeier, C., Miedel, M. C., Traub, P. & Graves, M. C., 1990a, Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein, Proc. Natl. Acad. Sci. U.S.A. 87: 6336.PubMedCrossRefGoogle Scholar
  12. Shoeman, R. L., Mothes, E., Kesselmeier, C. & Traub, P., 1990b, Intermediate filament assembly and stability in vitro: effect and implications of the removal of head and tail domains of vimentin by the human immunodeficiency virus type 1 protease, Cell Biol. Int. Rep. 14: 583.PubMedCrossRefGoogle Scholar
  13. Singh, B. & Arlinghaus, R.B., 1989, Vimentin phosphorylation by p37mos protein kinase in vitro and generation of a 50 kDa cleavage product in Vmos-transformed cells, Virology 173: 144.PubMedCrossRefGoogle Scholar
  14. Steinert, P. M. & Roop, D. R., 1988, Molecular and cellular biology of intermediate filaments, Ann. Rev. Biochem. 57: 593.PubMedCrossRefGoogle Scholar
  15. Traub, P., 1985, “Intermediate filaments. A review,” Springer Verlag, Heidelberg.CrossRefGoogle Scholar
  16. Traub, P., Plagens, U., Kühn, S. & Perides, G., 1987, Function of intermediate filaments. A novel hypothesis, Fortschr. Zool. 34: 275.Google Scholar
  17. Yoshinaka, Y. & Luftig, R. B., 1981, A comparison of avian and murine retrovirus polyprotein cleavage activities, Virology 111: 239.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Robert L. Shoeman
    • 1
  • Bernd Höner
    • 1
  • Timothy J. Stoller
    • 2
  • Elfriede Mothes
    • 1
  • Cornelia Kesselmeier
    • 1
  • Peter Traub
    • 1
  • Mary C. Graves
    • 2
  1. 1.Max-Planck-Institut für Zellbiologie RosenhofLadenburg/HeidelbergFederal Republic of Germany
  2. 2.Department of Molecular Genetics, Roche Research CenterHoffmann-La Roche IncNutleyUSA

Personalised recommendations