Skip to main content

Nonspecific Electrostatic Binding of Substrates and Inhibitors to Porcine Pepsin

  • Chapter
Book cover Structure and Function of the Aspartic Proteinases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 306))

Abstract

Porcine pepsin has long been recognized to have primary and secondary specificity for hydrophobic amino acids, and the binding of low molecular weight inhibitors (e.g., aliphatic alcohols) is also dominated by hydrophobic interactions1. However, the long standing ‘hydrophobic dogma’ in pepsin catalysis was seriously challenged when Pohl and Dunn2 described a series of polycationic oligopeptides that are among the most reactive synthetic substrates known. These highly hydrophilic molecules should not be well accommodated in a hydrophobic active site. Moreover, the steady state kinetic parameters were remarkably sensitive to the acidity of the medium. As the pH was increased from pH 3 to 6, the specificity number kcat/Km increased by three to four orders of magnitude and approached values close to the diffusion limit. The catalytic turnover number kcat was much less affected by the increase in pH, and the Michaelis constant Km decreased accordingly, by three to four orders of magnitude. A typical pH profile of steady state kinetic parameters, for the substrate Lys-Lys-Ala-Lys-Phe-Phe(NO2)-Arg-Leu, is shown in Figure 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Fruton, Adv. Enzymol. Related Areas Mol. Biol. 44: 1–36 (1976).

    CAS  Google Scholar 

  2. J. Pohl and B. M. Dunn, Biochemistry 27: 4827–4834 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. D. H. Rich and M. S. Bernatowicz, J. Med. Chem. 25: 791–795 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. F. C. Salituro, N. Agarwal, T. Hofmann and D. H. Rich, J. Med. Chem. 30: 286–295 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. Logarithmic partition coefficients logP for the sidechains (beginning with Cβ) were calculated from atomic contributions reported in (a) A. K. Ghose and G. M. Crippen, J. Comput. Chem. 7: 565–577 (1986); (b) P. Furet, A. Sele and N. C. Cohen, J. Mol Graphics 6:182-189 (1988); (c) D. Eisenberg and A. D. McLachlan, Nature (London) 319:199-203 (1986).

    Article  CAS  Google Scholar 

  6. H. J. Nolte, T. L. Rosenberry and E. Neumann, Biochemistry 19: 3705–3711 (1980).

    Article  PubMed  CAS  Google Scholar 

  7. (a) E. Neumann, in “Topics of Bioelectrochemistry and Bioenergetics” (G. Milazzo, Ed.), John Wiley, New York, pp. 113–160 (1981). (b) E. Neumann, in “Structural and Functional Aspects of Enzyme Catalysis” (H. Eggerer, R. Huber, Eds.), Springer-Verlag, Berlin (1981). (c) E. Neumann, in “Modern Bioelectrochemistry” (F. Gutmann, K. Keyzer, Eds.), Plenum Press, New York, pp. 97-175 (1986). (d) E. Neumann, Prog. Biophys. Molec. Biol. 47:197-231 (1986). (e) N. K. Rogers, Progr. Biophys. Molec. Biol. 48:37-66 (1986).

    Google Scholar 

  8. B. M. Dunn, B. Parten, M. Jimenez, C. E. Rolph, M. Valler and J. Kay, in “Aspartic Proteinases and their Inhibitors” (V. Kostka, Ed.), Walter de Gruyter, Berlin, pp. 221–243 (1985).

    Google Scholar 

  9. W. W. Cleland, Biochemistry 14: 3220–3224 (1975).

    Article  PubMed  CAS  Google Scholar 

  10. D. A. Case, Prog. Biophys. Molec. Biol. 52: 39–70 (1988).

    Article  CAS  Google Scholar 

  11. D. H. Rich and D. B. Northrop, in “Computer Aided Drug Design” (T. J. Perun and C. L. Probst, Eds.), Marcel Dekker, New York, p. 185–250 (1989).

    Google Scholar 

  12. M. Miller, J. Schneider, B. K. Sathyanarayna, M. V. Toth, G. R. Marshall, L. Clawson, L. Selk, S. B. H. Kent, and A. Wlodawer, Science (Washington, D.C.) 246: 1149–1152 (1989).

    Article  CAS  Google Scholar 

  13. P. S. Vermesch, J. J. G. Tesmer, D. D. Lemon and F. A. Quiocho, J. Biol. Chem. 265: 16592–16603 (1990).

    Google Scholar 

  14. (a) P. Haberfield and J. J. Cincotta, J.Org.Chem. 55: 1334–1338 (1990). (b) A. J. Kirby, Adv.Phys.Org.Chem. 17:183 (1980).

    Article  CAS  Google Scholar 

  15. (a) K. C. Chou and S. P. Jiang, Sci. Sin. 17: 664–680 (1974). (b) K. C. Chou, Sci. Sin. 19:505-528 (1976). (c) K. C. Chou and S. Forsén, Biophys. Chem. 12:255-263 (1980). (d) K. C. Chou and G. P. Zhou, J. Amer. Chem. Soc. 104:1409-1413 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kuzmič, P., Sun, CQ., Zhao, ZC., Rich, D.H. (1991). Nonspecific Electrostatic Binding of Substrates and Inhibitors to Porcine Pepsin. In: Dunn, B.M. (eds) Structure and Function of the Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 306. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6012-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6012-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6014-8

  • Online ISBN: 978-1-4684-6012-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics