Nonspecific Electrostatic Binding of Substrates and Inhibitors to Porcine Pepsin

  • Petr Kuzmič
  • Chong-Qing Sun
  • Zhi-Cheng Zhao
  • Daniel H. Rich
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)


Porcine pepsin has long been recognized to have primary and secondary specificity for hydrophobic amino acids, and the binding of low molecular weight inhibitors (e.g., aliphatic alcohols) is also dominated by hydrophobic interactions1. However, the long standing ‘hydrophobic dogma’ in pepsin catalysis was seriously challenged when Pohl and Dunn2 described a series of polycationic oligopeptides that are among the most reactive synthetic substrates known. These highly hydrophilic molecules should not be well accommodated in a hydrophobic active site. Moreover, the steady state kinetic parameters were remarkably sensitive to the acidity of the medium. As the pH was increased from pH 3 to 6, the specificity number kcat/Km increased by three to four orders of magnitude and approached values close to the diffusion limit. The catalytic turnover number kcat was much less affected by the increase in pH, and the Michaelis constant Km decreased accordingly, by three to four orders of magnitude. A typical pH profile of steady state kinetic parameters, for the substrate Lys-Lys-Ala-Lys-Phe-Phe(NO2)-Arg-Leu, is shown in Figure 1.


Inhibition Constant Aspartic Proteinase Free Energy Profile Porcine Pepsin Carboxylate Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Fruton, Adv. Enzymol. Related Areas Mol. Biol. 44: 1–36 (1976).Google Scholar
  2. 2.
    J. Pohl and B. M. Dunn, Biochemistry 27: 4827–4834 (1988).PubMedCrossRefGoogle Scholar
  3. 3.
    D. H. Rich and M. S. Bernatowicz, J. Med. Chem. 25: 791–795 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    F. C. Salituro, N. Agarwal, T. Hofmann and D. H. Rich, J. Med. Chem. 30: 286–295 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    Logarithmic partition coefficients logP for the sidechains (beginning with Cβ) were calculated from atomic contributions reported in (a) A. K. Ghose and G. M. Crippen, J. Comput. Chem. 7: 565–577 (1986); (b) P. Furet, A. Sele and N. C. Cohen, J. Mol Graphics 6:182-189 (1988); (c) D. Eisenberg and A. D. McLachlan, Nature (London) 319:199-203 (1986).CrossRefGoogle Scholar
  6. 6.
    H. J. Nolte, T. L. Rosenberry and E. Neumann, Biochemistry 19: 3705–3711 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    (a) E. Neumann, in “Topics of Bioelectrochemistry and Bioenergetics” (G. Milazzo, Ed.), John Wiley, New York, pp. 113–160 (1981). (b) E. Neumann, in “Structural and Functional Aspects of Enzyme Catalysis” (H. Eggerer, R. Huber, Eds.), Springer-Verlag, Berlin (1981). (c) E. Neumann, in “Modern Bioelectrochemistry” (F. Gutmann, K. Keyzer, Eds.), Plenum Press, New York, pp. 97-175 (1986). (d) E. Neumann, Prog. Biophys. Molec. Biol. 47:197-231 (1986). (e) N. K. Rogers, Progr. Biophys. Molec. Biol. 48:37-66 (1986).Google Scholar
  8. 8.
    B. M. Dunn, B. Parten, M. Jimenez, C. E. Rolph, M. Valler and J. Kay, in “Aspartic Proteinases and their Inhibitors” (V. Kostka, Ed.), Walter de Gruyter, Berlin, pp. 221–243 (1985).Google Scholar
  9. 9.
    W. W. Cleland, Biochemistry 14: 3220–3224 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    D. A. Case, Prog. Biophys. Molec. Biol. 52: 39–70 (1988).CrossRefGoogle Scholar
  11. 11.
    D. H. Rich and D. B. Northrop, in “Computer Aided Drug Design” (T. J. Perun and C. L. Probst, Eds.), Marcel Dekker, New York, p. 185–250 (1989).Google Scholar
  12. 12.
    M. Miller, J. Schneider, B. K. Sathyanarayna, M. V. Toth, G. R. Marshall, L. Clawson, L. Selk, S. B. H. Kent, and A. Wlodawer, Science (Washington, D.C.) 246: 1149–1152 (1989).CrossRefGoogle Scholar
  13. 13.
    P. S. Vermesch, J. J. G. Tesmer, D. D. Lemon and F. A. Quiocho, J. Biol. Chem. 265: 16592–16603 (1990).Google Scholar
  14. 14.
    (a) P. Haberfield and J. J. Cincotta, J.Org.Chem. 55: 1334–1338 (1990). (b) A. J. Kirby, Adv.Phys.Org.Chem. 17:183 (1980).CrossRefGoogle Scholar
  15. 15.
    (a) K. C. Chou and S. P. Jiang, Sci. Sin. 17: 664–680 (1974). (b) K. C. Chou, Sci. Sin. 19:505-528 (1976). (c) K. C. Chou and S. Forsén, Biophys. Chem. 12:255-263 (1980). (d) K. C. Chou and G. P. Zhou, J. Amer. Chem. Soc. 104:1409-1413 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Petr Kuzmič
    • 1
  • Chong-Qing Sun
    • 1
  • Zhi-Cheng Zhao
    • 1
  • Daniel H. Rich
    • 1
  1. 1.School of Pharmacy and Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations