Comparison of Three Inhibitor Complexes of Human Immunodeficiency Virus Protease

  • Amy L. Swain
  • Alla Gustchina
  • Alexander Wlodawer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)


The protease encoded by human immunodeficiency virus (HIV) presents one of the most promising targets for designing new classes of drugs which could be therapeutically beneficial in cases of acquired immune deficiency syndrome (AIDS). A rational approach to drug design begins with characterization of the target enzyme and of enzyme-inhibitor complexes. In addition to kinetic data, structural information can elucidate precise interactions between inhibitors and the enzyme that may be responsible for effective inhibition. To aid in this drug design effort a large number of complexes of HIV-1 protease with substrate-based inhibitors are being studied, and several crystal structures of these complexes have been solved. Five structures of HIV-1 protease-inhibitor complexes have already been published (Miller et al., 1989; Erickson et al. 1990; Fitzgerald et al., 1990; Swain et al., 1990; Jaskólski et al., 1991). It is necessary to compare these structures in order to draw general conclusions about the nature of protein-inhibitor interactions.


Human Immunodeficiency Virus Acquire Immune Deficiency Syndrome Carbonyl Oxygen Hydrogen Bonding Distance Polar Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Erickson, J., Neidhart, D. J., VanDrie, J., Kempf, D. J., Wang, X. C., Norbeck, D., Plattner, J. J., Rittenhouse, J., Turon, M., Wideburg, N., Kohlbrenner, W. E., Simmer, R., Helfrich, R., Paul, D. & Knigge, M., 1990, Science 249: 527–533.PubMedCrossRefGoogle Scholar
  2. Fitzgerald, P. M. D., McKeever, B. M., VanMiddlesworth, J. F., Springer, J. P., Heimbach, J. C., Leu, C.-T., Herber, W. K., Dixon, R. A. F. & Darke, P. L., 1990, J. Biol. Chem. 265: 14209–14219.PubMedGoogle Scholar
  3. Gustchina, A. & Weber, I. T., 1990, FEBS Lett. 269: 269–272.PubMedCrossRefGoogle Scholar
  4. Jaskólski, M., Tomasselli, A. G., Sawyer, T. K., Staples, D. G., Heinrikson, R. L., Schneider, J., Kent, S. B. H. & Wlodawer, A., 1991, Biochemistry, 30: 1600–1609.PubMedCrossRefGoogle Scholar
  5. Jones, A., 1985, Methods Enzymol. 115: 157–171.PubMedCrossRefGoogle Scholar
  6. Miller, M., Schneider, J., Sathyanarayana, B. K., Toth, M. V., Marshall, G. R., Clawson, L., Selk, L., Kent, S. B. H. & Wlodawer, A, 1989, Science 246: 1149–1152.PubMedCrossRefGoogle Scholar
  7. Swain, A. L., Miller, M., Green, J., Rich, D. H., Schneider, J., Kent, S. B. H. & Wlodawer, A., 1990, Proc. Natl. Acad. Sci. U.S.A. 87: 8805–8809.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Amy L. Swain
    • 1
  • Alla Gustchina
    • 2
  • Alexander Wlodawer
    • 1
  1. 1.Macromolecular Structure LaboratoryNCI-Frederick Cancer Research and Development Center, ABL-Basic Research ProgramFrederickUSA
  2. 2.V.A. Engelhardt Institute of Molecular BiologyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations