Advertisement

Expression and Characterization of Genetically Linked Homo- and Hetero-Dimers of Hiv Proteinase

  • Hans-Georg Kräusslich
  • Anke-Mareil Traenckner
  • Friedrich Rippmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)

Abstract

Infectious retroviral particles are composed of an inner core structure enclosed in a host-derived plasma membrane that contains the viral glycoproteins. In the case of HIV, this inner core consists of a ribonucleoprotein complex (two identical molecules of genomic RNA associated with the viral nucleocapsid [NC] protein and probably also with the viral enzymes reverse transcriptase [RT], integrase [IN] and proteinase [PR]) encased in a capsid [CA] shell (Gelderblom et al., 1989). All structural components of the viral core (derived from the viral gag gene) as well as the replication enzymes (derived from the pol gene) are synthesized and assembled as polyprotein precursors. Proteolytic processing by the virus-encoded, virion-associated proteinase takes place only during and after budding of the viral particle from the plasma membrane and processing is not required for the release of immature, non-infectious particles but is necessary for maturation of infectious virions (reviewed in Kräusslich & Wimmer, 1988). This elaborate mechanism of synthesizing different stable polyproteins at defined rates enables the virus to target many components of the viral particle to the site of assembly using only a single targeting signal. It requires, however, that a proteolytic enzyme is packaged into the virion that is capable of separating the different functional domains, thus allowing viral replication to occur. The activity of such an enzyme has to be tightly regulated since premature processing would dissociate the components of the virion from the site of assembly and incomplete or unfaithful processing should interfere with viral uncoating and replication. Controlled limited proteolysis can be achieved by synthesizing an inactive form of the viral proteinase as part of the polyprotein which is activated upon assembly of the viral particle.

Keywords

Hinge Region Mutant Enzyme Expression Product Rous Sarcoma Virus Viral Proteinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum, E. Z., Bebernitz, G. A. & Gluzman, Y., 1990, Isolation of mutants of human immunodeficiency virus protease based on toxicity of the enzyme in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 87: 5573–5577PubMedCrossRefGoogle Scholar
  2. Debouck, C., Dreyer, G. B., Gorniak, J. G., Malinowski, J., Meek, T. D., Moore, M. L. & Strickler, J. E., 1989, Expression and structure-function characterization of HIV-1 proteinase, in: “Viral proteinases as targets for antiviral chemotherapy,” Kräusslich, H.-G., Oroszlan, S. and Wimmer, E., eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  3. Gelderblom, H. R., Özel, M. & Pauli, G., 1989, Morphogenesis and morphology of HIV structure-function relations, Arch. Virol. 106: 1–13PubMedCrossRefGoogle Scholar
  4. Hellen, C. U. T., Kräusslich, H.-G. & Wimmer, E., 1989, Proteolytic processing in the replication of RNA viruses, Biochemistry 28: 9881–9890.PubMedCrossRefGoogle Scholar
  5. Jaskólski, M., Miller, M., Mohana Rao, J. K., Leis, J. & Wlodawer, A., 1990, Structure of the aspartic protease from Rous sarcoma retrovirus refined at 2 Å resolution, Biochemistry 29: 5889–5898.PubMedCrossRefGoogle Scholar
  6. Kay, J. & Dunn, B. M., 1990, Viral proteinases: weakness in strength, Biochim. Biophys. Acta 1048: 1–18.PubMedGoogle Scholar
  7. Kräusslich, H.-G., Ingraham, R. H., Skoog, M. T., Wimmer, E., Pallai, P. V. & Carter, C. A., 1989, Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides, Proc. Natl. Acad. Sci. U.S.A. 86: 807–811.PubMedCrossRefGoogle Scholar
  8. Kräusslich, H.-G., Schneider, H., Zybarth, G., Carter, C. A. & Wimmer, E., 1988, Processing of in vitro-synthesized gag precursor proteins of human immunodeficiency virus (HIV) type 1 by HIV proteinase generated in Escherichia coli, J. Virol. 62: 4393–4397.PubMedGoogle Scholar
  9. Kräusslich, H.-G. & Wimmer, E., 1988, Viral proteinases, Annu. Rev. Biochem. 57: 701–754.PubMedCrossRefGoogle Scholar
  10. Kunkel, T., 1985, Rapid and efficient site-specific mutagenesis without phenotypic selection, Proc. Natl. Acad. Sci. U.S.A. 82: 488–492.PubMedCrossRefGoogle Scholar
  11. Lifson, S. & Sander, C., 1980, Composition, cooperativity and recognition in proteins, in: “Protein Folding,” Jaenicke, R., ed., Elsevier/North Holland Biomedical Press.Google Scholar
  12. Loeb, D. D., Swanstrom, R., Everitt, L., Manchester, M., Stamper, S. E. & Hutchison III, C. A., 1989, Complete mutagenesis of the HIV-1 protease, Nature 340: 397–400.PubMedCrossRefGoogle Scholar
  13. Moffatt, B. A. & Studier, F. W., 1987, T7 lysozyme inhibits transcription by T7 RNA polymerase, Cell 49: 221–227.PubMedCrossRefGoogle Scholar
  14. Ratner, L., Haseltine, W., Patarca, R., Livak, K. J., Starcich, B., Josephs, S. F., Doran, E. R., Rafalski, J. A., Whitehom, E. A., Baumeister, K., Ivanoff, L., Petteway, S. R., Pearson, M. L., Lautenberger, J. A., Papas, T. S., Ghrayeb, J., Chang, N. T., Gallo, R. C. & Wong-Staal, F., 1985, Complete nucleotide sequence of the AIDS virus HTLV-III, Nature 316: 277–284.CrossRefGoogle Scholar
  15. Rosenberg, A. H., Lade, B. N., Chui, D., Lin, S., Dunn, J. J. & Studier, F. W., 1987, Vectors for selective expression of cloned DNAs by T7 RNA polymerase, Gene 56: 125–135.PubMedCrossRefGoogle Scholar
  16. Schneider, J. & Kent, S. B. H., 1988, Enzymatic activity of a synthetic 99 residue protein corresponding to the putative HIV-1 protease. Cell 54: 363–368.PubMedCrossRefGoogle Scholar
  17. Toh, H., Ono, M., Saigo, K. & Miyata, T., 1985, Retroviral protease-like sequence in the yeast transposon Tyl, Nature 315: 691–692.CrossRefGoogle Scholar
  18. Wlodawer, A., Miller, M., Jaskólski, M., Sathyanarayana, B. K., Baldwin, E., Weber, I. T., Selk, L. M., Clawson, L., Schneider, J. & Kent, S. B. H., 1989, Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease, Science 245: 616–621.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Hans-Georg Kräusslich
    • 1
  • Anke-Mareil Traenckner
    • 1
  • Friedrich Rippmann
    • 2
  1. 1.Institut für Virusforschung/ATVDeutsches KrebsforschungszentrumHeidelbergDeutschland
  2. 2.Laboratory of Mathematical BiologyThe National Institute for Medical ResearchLondonUK

Personalised recommendations