Advertisement

Aspartic Proteinase from Barley Seeds is Related to Animal Cathepsin D

  • K. Törmäkangas
  • P. Runeberg-Roos
  • A. Östman
  • C. Tilgmann
  • P. Sarkkinen
  • J. Kervinen
  • L. Mikola
  • N. Kalkkinen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)

Abstract

In contrast to the well-characterized mammalian aspartic proteinases, plant aspartic proteinases have received little attention so far. Aspartic proteinase activity has been detected, for example, in resting seeds of scots pine (Salmia et al., 1978), soybean (Bond & Bowles, 1983), barley and wheat (Morris et al., 1985) as well as in leaves of orange (Garcia-Martinez & Moreno, 1986) and barley (Kervinen et al., 1990). Aspartic proteinases have been purified from the seeds of rice (Doi et al., 1980), cucumber, squash (Polanowski et al 1985) and wheat (Dunaevsky et al., 1989) as well as from the leaves of tomato (Rodrigo et al., 1989). The plant aspartic proteinases have been reported to enhance the hydrolysis of at least wheat (Belozersky et al., 1989) and cocoa (Heinrichs et al., 1990) storage proteins. Rodrigo et al (1989) have also suggested that the biological action of the pathogenesis related proteins in tomato leaves could be regulated by aspartic proteinases. Taken together, the specific functions of plant aspartic proteinases remain largely unknown.

Keywords

Aspartic Proteinase Barley Seed Barley Grain Amino Acid Insert cDNA Sequence Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belozersky, M. A., Sarbakanova, Sh. T., & Dunaevsky, Ya. E., 1989, Aspartic proteinase from wheat seeds: isolation, properties and action on gliadin, Planta 177: 321–326.CrossRefGoogle Scholar
  2. Bond, H. M., & Bowles, D. J., 1983, Characterization of soybean endopeptidase activity using exogenous and endogenous substrates, Plant Physiol. 72: 345–350.PubMedCrossRefGoogle Scholar
  3. Doi, E., Shibata, D., Matoba, T., & Yonezawa, D., 1980, Characterization of pepstatin-sensitive acid protease in resting rice seeds, Agric. Biol. Chem. 44: 741–747.CrossRefGoogle Scholar
  4. Dunaevsky, Y., Sarbakanova, S. T., & Belozersky, M. A., 1989, Wheat seed carboxypeptidase and joint action on gliadin of proteases from dry and germinating seeds, J. Exp. Botany 40: 1323–1329.CrossRefGoogle Scholar
  5. Faust, P. L., Kornfeld, S., & Chirgwin, J. M., 1985, Cloning and sequence analysis of cDNA for human cathepsin D, Proc. Natl. Acad. Sci. U.S.A. 82: 4910–4914.PubMedCrossRefGoogle Scholar
  6. Garcia-Martinez, J. L., & Moreno, J., 1986, Proteolysis of ribulose-l,5-bisphosphate carboxylase/oxygenase in Citrus leaf extracts, Physiol. Plant. 66: 377–383.CrossRefGoogle Scholar
  7. Hayano, T., Sogawa, K., Ichihara, Y., Fujii-Kuriyama, Y., & Takahashi, K., 1988, Primary structure of human pepsinogen C gene, J. Biol. Chem. 263: 1382–1385.PubMedGoogle Scholar
  8. Heinrichs, H., Xiong, Q., Voigt, J., Kirchhoff, P., & Biehl, B., 1990, An aspartic endoprotease and a serine exoprotease are involved in storage protein degradation in cocoa seeds, Physiol. Plant. 79: abstract A15.81.Google Scholar
  9. Kervinen, J., Kontturi, M., & Mikola, J., 1990, Changes in the proteinase composition of barley leaves during senescence in field conditions, Cereal Res. Comm. 18: 191–197.Google Scholar
  10. Miyazaki, H., Fukamizu, A., Hirose, S., Hayashi, T., Hori, H., Ohkubo, H., Nakanishi, S., & Murakami, K., 1984, Structure of the human renin gene, Proc. Natl. Acad. Sci. USA. 81: 5999–6003.PubMedCrossRefGoogle Scholar
  11. Morris, P. C., Miller, R. C., & Bowles, D. J., 1985, Endopeptidase activity in dry harvest-ripe wheat and barley grains, Plant. Sci. 39: 121–124.CrossRefGoogle Scholar
  12. Polanowski, A., Wilusz, T., Kolaczkowska, M. K., Wieczorek, M., & Wilimowska-Pelc, A., 1985, Purification and characterization of aspartic proteinases from Cucumis sativus and Cucurbita maxima seeds, in: “Aspartic proteinases and their inhibitors”, pp 49–52. V. Kostka ed., Walter de Gruyter and Co., New York.Google Scholar
  13. Rodrigo, I., Vera, P., & Conejero, V., 1989, Degradation of tomato pathogenesis-related proteins by an endogenous 37 kDa aspartyl endoproteinase, Eur. J. Biochem. 184: 663–669.PubMedCrossRefGoogle Scholar
  14. Runeberg-Roos, P., Törmakängas, K., & Östman, A., Primary structure of a barley grain aspartic proteinase — a plant aspartic proteinase resembling mammalian cathepsin D, submitted.Google Scholar
  15. Salmia, M. A., Nyman, S. A., & Mikola, J. J., 1978, Characterization of the proteinases present in germinating seeds of Scots pine, Pinus sylvestris, Physiol. Plant. 42: 252–256.CrossRefGoogle Scholar
  16. Sarkkinen, P., Kalkkinen, N., Tilgmann, C., Siuro, J., Kervinen, J. & Mikola, L., 1990, Aspartic proteinase from barley grains is related to mammalian lysosomal cathepsin D, Submitted.Google Scholar
  17. Sogawa, K., Fujii-Kuriyama, Y., Mizukami, Y., Ichihara, Y., & Takahashi, K., 1983, Primary structure of human pepsinogen gene, J. Biol. Chem. 258: 5306–5311.PubMedGoogle Scholar
  18. Tang, J., & Wong, R. N. S., 1987, Evolution in the structure and function of aspartic proteinases, J. Cell. Biochem. 33: 53–63.PubMedCrossRefGoogle Scholar
  19. Örd, T., Kolmer, M., Villems, R., & Saarma, M., 1990, Structure of the human genomic region homologous to the bovine prochymosin-encoding gene, Gene 91: 241–246.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • K. Törmäkangas
    • 1
  • P. Runeberg-Roos
    • 1
  • A. Östman
    • 1
  • C. Tilgmann
    • 1
  • P. Sarkkinen
    • 2
  • J. Kervinen
    • 1
  • L. Mikola
    • 2
  • N. Kalkkinen
    • 1
  1. 1.Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Cell BiologyUniversity of JyvaskylaJyvaskylaFinland

Personalised recommendations