Biological Significance and Activity Control of Cathepsin E Compared with Cathepsin D

  • Kenji Yamamoto
  • Hideaki Sakai
  • Eiko Ueno
  • Yuzo Kato
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)


Protein degradation in mammalian cells is thought to occur via two major pathways: a lysosomal and a non-lysosomal pathway. The former may participate in degradation of the majority of cellular proteins nonspecifically and the latter may preferentially degrade abnormal and short-lived proteins.1 Recently, a number of non-lysosomal proteinases, such as cytosolic proteinases and plasma membrane-associated proteinases, have been identified in mammalian tissues. Most of the non-lysosomal enzymes have been shown to exhibit optimal activity at neutral pH. The aspartic proteinases are one of the four known main classes of proteinases and catalyze the hydrolysis of a variety of protein substrates below pH 5. The aspartic proteinases in mammalian cells are tentatively classified into two groups. One is a secretory group consisting of enzymes that function in extracellular spaces (pepsin, gastricsin etc.). The other is a non-secretory group consisting enzymes that function primarily within the cell. Cathepsins D and E are the two main non-secretory aspartic proteinases. Cathepsin D is a typical and well characterized lysosomal enzyme that is identified in almost all the mammalian cells. The wide distribution of cathepsin D throughout most tissues suggests its general role in proteolysis of cellular proteins. Besides its lysosomal role, cathepsin D has been suggested to be involved in a variety of physiological and pathological processes, for example in the proteolytic processing of lysosomal enzymes2–4 and inflammatory and neoplastic disease states.5–7 By contrast, cathepsin E is a relatively poorly characterized enzyme. Recent immunochemical studies have demonstrated that cathepsin E is a non-lysosomal protein, a part of which is present in the cytosol.8–10 However, the endogenous Substrates for cathepsin E are not known and the cellular function of this enzyme is therefore unclear.


Aspartic Proteinase Erythroid Differentiation Human Erythrocyte Membrane Mature Erythrocyte Uninduced Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Grinde and P. D. Seglen, Biochim. Biophys. Acta 632: 73–86 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    Y. Nishimura and K. Kato, Arch. Biochem. Biophys. 260: 712–718 (1988).PubMedCrossRefGoogle Scholar
  3. 3.
    Y. Nishimura and K. Kato, Arch. Biochem. Biophys. 261: 64–71 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. Nishimura and T. Kawabata, K. Furuno and K. Kato, Arch. Biochem. Biophys. 271: 400–406 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    A. R. Poole, in: “Dynamics of Connective Tissue Macromolecules” P. M. C. Burleigh and A. R. Poole, eds., North-Holland Publishing Company, Amsterdam (1975).Google Scholar
  6. 6.
    F. Capony, M. Morisset, A. J. Barrett, J. P. Capony, P. Broquet, F. Vignon, M. Chambon, P. Louisot and H. Rochefort, J. Cell Biol. 104: 253–262 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Saku, H. Sakai, N. Tsuda, H. Okabe, Y. Kato and K. Yamamoto, Gut 31: 1250–1255 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Sakai, T. Saku, Y. Kato and K. Yamamoto, Biochim. Biophys. Acta 991: 367–375 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Yonezawa, K. Fujii, Y. Maejima, K. Tamoto, Y. Mori and N. Muto, Arch. Biochem. Biophys. 267: 176–183 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Ichimaru, H. Sakai, T. Saku, K. Kunimatsu, Y. Kato, I. Kato and K. Yamamoto, J. Biochem. 108: 1009–1015 (1990).PubMedGoogle Scholar
  11. 11.
    K. Yamamoto, O. Kamata, N. Katsuda and K. Kato, J. Biochem. 87: 511–516 (1980).PubMedGoogle Scholar
  12. 12.
    C. Lapresle, V. Puizdar, C. Porchon-Bertolotto, E. Joukoff and V. Turk, Biol. Chem. Hoppe-Seyler 367: 523–526 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    R. A. Jupp, A. D. Richards, J. Kay, B. M. Dunn, J. B. Wyckoff, I. M. Samloff and K. Yamamoto, Biochem. J. 254: 895–898 (1988).PubMedGoogle Scholar
  14. 14.
    K. Yamamoto, E. Ueno, H. Uemura and Y. Kato, Biochem. Biophvs. Res. Commun. 148: 267–272 (1987).CrossRefGoogle Scholar
  15. 15.
    I. M. Samloff, R. T. Taggart, T. Shiraishi, T. Branch, W. A. Reid, R. Heath, R. W. Lewis, M. J. Valler and J. Kay, Gastroenterology 93: 77–84 (1987).PubMedGoogle Scholar
  16. 16.
    M. Takeda, E. Ueno, Y. Kato and K. Yamamoto, J. Biochem. 100: 1269–1277 (1986).PubMedGoogle Scholar
  17. 17.
    K. Yamamoto, N. Katsuda and K. Kato, Eur. J. Biochem. 92: 499–508 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Yamamoto, N. Katsuda, M. Himeno and K. Kato, Eur. J. Biochem. 95: 459–467 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    K. Yamamoto, M. Takeda, H. Yamamoto, M. Tatsumi and Y. Kato, J. Biochem. 97: 821–830 (1985).PubMedGoogle Scholar
  20. 20.
    S. Yonezawa, T. Tanaka and T. Miyauchi, Arch. Biochem. Biophys. 256: 499–508 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    K. Yamamoto, H. Yamamoto, M. Takeda and Y. Kato, Biol. Chem. Hoppe-Seyler 369: 315–322 (1988).PubMedGoogle Scholar
  22. 22.
    K. Yamamoto, M. Yamada and Y. Kato, J. Biochem. 105: 114–119 (1989).PubMedGoogle Scholar
  23. 23.
    V. P. Patel and H. F. Lodish, J. Cell Biol. 105: 3105–3118 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Saku, H. Sakai, Y. Shibata, Y. Kato and K. Yamamoto, J. Biochem., in press.Google Scholar
  25. 25.
    D. J. Thomas, A. D. Richards, R. A. Jupp, E. Ueno, K. Yamamoto, I. M. Samloff, B. M. Dunn and J. Kay, FEBS Lett. 243: 145–148 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    C. Schwabe, Anal. Biochem. 53: 484–490 (1973).PubMedCrossRefGoogle Scholar
  27. 27.
    S. Watabe, A. Terada, T. Ikeda, H. Kouyama, S. Taguchi and N. Yago, Biochem. Biophvs. Res. Commun. 89: 1161–1167 (1979).CrossRefGoogle Scholar
  28. 28.
    S. Pillai, R. Botti and J. E. Zull, J. Biol. Chem. 258: 9724–9728 (1983).PubMedGoogle Scholar
  29. 29.
    G. L. Dale, S. L. Norenberg, T. Suzuki and L. Forman, in: “The Red Cell,” G. J. Brewer, ed., Alan R. Liss, Inc., New York (1989).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenji Yamamoto
    • 1
  • Hideaki Sakai
    • 2
  • Eiko Ueno
    • 2
  • Yuzo Kato
    • 2
  1. 1.Department of PharmacologyKyushu University, Faculty of DentistryFukuokaJapan
  2. 2.Department of PharmacologyNagasaki University School of DentistryNagasakiJapan

Personalised recommendations