Advertisement

Functional Implications of the Three-Dimensional Structure of Bovine Chymosin

  • Gary L. Gilliland
  • Maureen Toner Oliva
  • Jonathan Dill
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)

Abstract

Chymosin (EC 3.4.23.4, formerly rennin) is one of the primary enzymes used to initiate milk clotting for cheese production (MacKinlay & Wake, 1971). This process begins with the specific cleavage of the Phe105*Met106 peptide bond of κ-casein by this enzyme (Jolies et al., 1968). The sequence of this cleavage site is
$$\eqalign{ & {\rm{ - His - Pro - His - Pro - His - Leu - Ser - Phe*Met - Ala - Ile - Pro - Pro - Lys - Lys - }}{\rm{.}} \cr & {\rm{98 105 106 112}} \cr} $$
A number of studies with synthetic peptides, which were designed based on the 103–108 κ-casein sequence, have been undertaken to determine the kinetic parameters of chymosin (e.g., Visser & Rollema, 1986), and recently studies by Visser and coworkers (1987) have been performed which provide information concerning the substrate specificity of this enzyme. Based upon the results of these kinetic and model building studies, it was proposed that residues 103–108 fit snugly into the active site cleft and that the addition of the 98–102 sequence, -His-Pro-His-Pro-His-, assisted in the positioning of the 103–108 peptide segment into the active site by its favorable electrostatic interactions with residues on the protein surface.

Keywords

Aspartic Proteinase Acid Proteinase Substrate Analog Carboxylate Oxygen Atom Fungal Proteinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abad-Zapatero, C., Rydel, T. J., & Erickson, J., 1990, Revised 2.3 Å structure of procine pepsin: evidence for a flexible subdomain, Proteins: Struc. Func. Gen., 8: 62.CrossRefGoogle Scholar
  2. Andreeva, N. S., Zdanov, A. S., Gustchina, A. E.,& Fedorov, A. A., 1984, Structure of ethanol-inhibited porcine pepsin at 2-Å resolution and binding of the methyl ester of phenylalanyl-diiodotyrosine to the enzyme, J. Biol. Chem., 259: 11353.PubMedGoogle Scholar
  3. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rogers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M., 1977, The protein data bank: a computer-based archival file for macromolecular structures, J. Mol. Biol., 112: 535.PubMedCrossRefGoogle Scholar
  4. Berridge, N. J., 1945, The purification and crystallization of rennin, Biochem. J., 39: 179.PubMedGoogle Scholar
  5. Bhat, T. N., 1988, Calculation of an OMIT map, J. Appl. Crystallogr., 21: 279.CrossRefGoogle Scholar
  6. Blundell, T. L., Cooper, J., Foundling, S. I., Jones, D. M., Atrash, B., & Szelke, M., 1987, On the rational design of renin inhibitors: X-ray studies of aspartic proteinases complexed with transition state analogues, Biochemistry, 26: 5585.PubMedCrossRefGoogle Scholar
  7. Bott, R., Subramanian, E., & Davies, D. R., 1982, Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5-Å resolution, Biochemistry, 21: 6956.PubMedCrossRefGoogle Scholar
  8. Bunn, C. W., Camerman, N., T’sai, L. T., Moews, P. C., & Baumber, M. E., 1970, X-ray diffracton studies of rennin crystals, Phil. Trans. Roy. Soc, B257: 253.Google Scholar
  9. Burley, S. K., & Petsko, G. A., 1985, Aromatic-aromatic interaction: a mechanism of protein structure stabilization, Science, 229: 23.PubMedCrossRefGoogle Scholar
  10. Cooper, J. B., Khan, G., Taylor, G., Tickle, I. J., & Blundell, T.L., 1990, Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 Å resolution, J. Mol. Biol., 214: 199.PubMedCrossRefGoogle Scholar
  11. Cooper, J., Foundling, S., Hemmings, A., Blundell, T., Jones, D. M., Hallett, A., & Szelke, M., 1987, The structure of a synthetic pepsin inhibitor complexed with endothiapepsin, Eur. J. Biochem., 169: 215.PubMedCrossRefGoogle Scholar
  12. Finzel, B. C., 1987, Incorporation of fast Fourier transforms to speed restrained least-squares refinement of protein structures, J. Appl. Crystallogr., 20: 53.CrossRefGoogle Scholar
  13. Foltmann, B., 1960, Chromatographic purification of prorennin, Acta Chem. Scand., 14: 2247.CrossRefGoogle Scholar
  14. Foundling, S. I., Cooper, J., Watson, F. E., Cleasby, A., Pearl, L. H., Sibanda, B. L., Hemmings, A., Wood, S.P., Blundell, T.L., Valler, M.J., Norey, C. G., Kay, J., Boger, J., Dunn, B. M., Leckie, B. J., Jones, D. M., Atrash, B., Hallett, A., & Szelke, M., 1987, High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes, Nature, 327: 349.PubMedCrossRefGoogle Scholar
  15. Gilliland, G. L., Winborne, E. L., Nachman, J.,& Wlodawer, A., 1990, The Three-Dimensional Structure of Recombinant Bovine Chymosin at 2.3 Å Resolution, Proteins: Struc.Func. Gen., 8: 82.CrossRefGoogle Scholar
  16. Howard, A. J., Gilliland, G. L., Finzel, B. C., Poulos, T. L., Ohlendorf, D. H., & Salemme, F. R., 1987, The use of an imaging proportional counter in macromolecular crystallography, J. Appl. Crystallogr., 20: 383.CrossRefGoogle Scholar
  17. James, M. N. G., & Sielecki, A. R., 1983, Structure and refinement of penicillopepsin at 1.8 Å resolution, J. Mol. Biol., 163: 299.PubMedCrossRefGoogle Scholar
  18. Jolies, J., Alias, C., & Jolles, P., 1968, The tryptic peptide with rennin-sensitive linkage of cow’s κ-casein, Biochim. Biophys. Acta, 168: 591.Google Scholar
  19. James, M. N. G., Sielecki, A. R., & Hofmann, T., 1985, X-ray diffraction studies on penicillopepsin and its complexes: the hydrolytic mechanism, in “Aspartic Proteinases and Their Inhibitors,” Kostka, V., ed., New York, Walter de Gruyter.Google Scholar
  20. Jones, T. A., 1978, A graphics model bulding and refinement system for macromolecules. J. Appl. Crystallogr., 11: 268.CrossRefGoogle Scholar
  21. MacKinlay, A. G., & Wake, R. G., 1971, K-casein and its attack by rennin(chymosin), in: “Milk Proteins,” Vol 2. H. A. McKenzie, ed., New York, Academic Press.Google Scholar
  22. Moult, J., Sussman, F., & James, M. N. G., 1985, Electron density calculations as an extension of protein structure refinement-Streptomyces griseus protease A at 1.5 Å resolution, J. Mol. Biol., 182: 555.PubMedCrossRefGoogle Scholar
  23. Pearl, L., & Blundell, T., 1984, The active site of acid proteinases, FEBS Lett., 174: 96.PubMedCrossRefGoogle Scholar
  24. Sali, A., Veerapandian, B., Cooper, J. B., Foundling, S. I., Hoover, D. J., & Blundell, T. L., 1987, High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme, EMBO J., 8: 2179.Google Scholar
  25. Satow, Y., Cohen, G. H., Padlan, E. A., & Davies, D. R., 1986, Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 Å, J. Mol. Biol., 190: 593.PubMedCrossRefGoogle Scholar
  26. Sielecki, A. R., Fedorov, A. A., Boodhoo, A., Andreeva, N., & James, M. N. G., 1990, Molecular and crystal structure of monoclinic porcine pepsin refined at 1.8 Å resolution, J. Mol. Biol., 214: 143.PubMedCrossRefGoogle Scholar
  27. Suguna, K., Padlan, E. A., Smith, C. W., Carlson, W. D.,& Davies, D. R., 1987a, Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: Implications for a mechanism of action, Proc. Natl. Acad. Sci. U.S.A., 84: 7009.PubMedCrossRefGoogle Scholar
  28. Suguna, K., Bott, R. R., Padlan, E. A., Subramanian, E., Sheriff, S., Cohen, G. H., & Davies, D. R., 1987b, Structure and refinement at 1.8 Å resolution of the aspartic proteinase from Rhizopus chinensis, J. Mol. Biol, 196: 877.PubMedCrossRefGoogle Scholar
  29. Visser, S., & Rollema, H.S., 1986, Quantification of chymosin action on nonlabeled κ-casein-related peptide substrates by ultraviolet spectrophotometry: description of kinetics by the analysis of progress curves, Anal. Biochem., 153: 235.PubMedCrossRefGoogle Scholar
  30. Visser, S., Slangen, C. J., & van Rooijen, P. J., 1987, Peptide substrates for chymosin (rennin). Interaction sequences located outside the (103-108)-hexapeptide region that fits into the enzyme’s active-site cleft, Biochem. J., 244: 553.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Gary L. Gilliland
    • 1
    • 2
  • Maureen Toner Oliva
    • 1
    • 2
  • Jonathan Dill
    • 1
    • 2
  1. 1.Center for Advanced Research in Biotechnology, The Maryland Biotechnology InstituteUniversity of MarylandUSA
  2. 2.The National Institute of Standards and TechnologyRockvilleUSA

Personalised recommendations