Advertisement

Structure and Function of a Pepstatin-Insensitive Acid Proteinase from Aspergillus Niger var. Macrosporus

  • Kenji Takahashi
  • Masaru Tanokura
  • Hideshi Inoue
  • Masaki Kojima
  • Yutaka Muto
  • Makoto Yamasaki
  • Osamu Makabe
  • Takao Kimura
  • Toshio Takizawa
  • Toru Hamaya
  • Eiichiro Suzuki
  • Hiroshi Miyano
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)

Abstract

The fungus Aspergillus niger var. macrosporus produces two extracellular acid proteinases, proteinases A and B.1–3 The acid proteinase B (Mr about 35 kDa) is sensitive to pepstatin, diazoacetyl-DL-norleucine methyl ester (DAN) and l,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) and thus belongs to the ordinary aspartic proteinase family.4 On the other hand, the proteinase A (Mr about 22 kDa) is insensitive to pepstatin and also almost insensitive to DAN and EPNP,4 and shows substrate specificity fairly different from that of pepsin-type aspartic proteinases.5,6 These results indicate that the proteinase A belongs to a different acid proteinase family. This proteinase, therefore, seems to be an interesting object to investigate its structure/function relationships. Further, the study will contribute to a deeper understanding of the structure and function of the aspartic or acid proteinases in general.

Keywords

Circular Dichroism Aspergillus Niger Circular Dichroism Spectrum Aspartic Proteinase Acid Proteinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Koaze, H. Goi, K. Ezawa, Y. Yamada, and T. Hara, Fungal proteolytic enzymes. Part I. Isolation of two kinds of acid proteases excreted by Aspergillus niger var. macrosporus, Agr. Biol. Chem. 28: 216 (1964).CrossRefGoogle Scholar
  2. 2.
    S. Horiuchi, M. Honjo, M. Yamasaki, and Y. Yamada, Studies on acid proteinases. I. Homogeneity and molecular weight of acid proteases from Aspergillus niger var. macrosporus (Proctase A and Proctase B), Sci.Pap. Coll. Gen. Educ. Univ. Tokyo 19: 127 (1969).Google Scholar
  3. 3.
    S. Horiuchi, M. Yamasaki, and Y. Yamada, Studies on acid proteases. II. Amino acid composition of acid proteases from Aspergillus niger var. macrosporus (“Proctases A and B”), Sci. Pap. Coll. Gen. Educ, Univ. Tokyo 19: 140 (1969)Google Scholar
  4. 4.
    W.-J. Chang, S. Horiuchi, K. Takahashi, M. Yamasaki, and Y. Yamada, The structure and function of acid proteases. IV. Effects of acid protease-specific inhibitors on the acid proteases from Aspergillus niger var. macrosporus, J. Biochem. 80: 975 (1976).Google Scholar
  5. 5.
    K. Iio and M. Yamasaki, Specificity of acid proteinase A from Aspergillus niger var. macrosporus towards B-chain of performic acid oxidized bovine insulin, Biochim. Biophys. Acta 429: 912 (1976).PubMedGoogle Scholar
  6. 6.
    E. Ido, T. Saito, and M. Yamasaki, Substrate specificity of acid proteinase A from Aspergillus niger var. macrosporus, Agric. Biol. Chem. 51: 2855 (1987).CrossRefGoogle Scholar
  7. 7.
    T. Maita, S. Nagata, G. Matsuda, S. Maruta, K. Oda, and D. Tsuru, Complete amino acid sequence of Scytalidium lignicolum acid protease B, J. Biochem. 95: 465 (1984).PubMedGoogle Scholar
  8. 8.
    X. Lin and T. Tang, Purification, characterization, and gene cloning of thermopsin, a thermostable acid protease from Sulfolobus acidocaldarius, J. Biol. Chem. 265: 1490 (1990).PubMedGoogle Scholar
  9. 9.
    S. Murao and K. Oda, Pepstatin-insensitive acid proteinases, in: Aspartic Proteinases and Their Inhibitors, V. Kosíka, ed., pp. 379–399, Walter de Gruyter, Berlin (1985).Google Scholar
  10. 10.
    D. Tsuru, S. Shimada, S. Maruta, T. Yoshimoto, K. Oda, S. Murao, T. Miyata, and S. Iwanaga, Isolation and amino acid sequence of a peptide containing an epoxide-reactive residue from the thermolysin digest of Scytalidium lignicolum acid protease B, J. Biochem. 99: 1537 (1986).PubMedGoogle Scholar
  11. 11.
    D. Tsuru, R. Kobayashi, N. Nakagawa, and T. Yoshimoto, Inhibition of Scytalidium lignicolum acid protease B by l-diazo-3-phenyl-2-propanone, Agric. Biol. Chem. 53: 1305 (1989).CrossRefGoogle Scholar
  12. 12.
    D. Tsuru, A. Naotsuka, R. Kobayashi, T. Yoshimoto, K. Oda, and S. Murao, Inactivation of Scytalidium lignicolum acid protease B with l,2-epoxy-3-(4′-azido-2′-nitrophenoxy)propane, Agric. Biol. Chem. 53: 2751 (1989).CrossRefGoogle Scholar
  13. 13.
    G. von Heijne, A new method for predicting signal sequence cleavage sites, Nucleic Acids Res. 14: 4683 (1986).CrossRefGoogle Scholar
  14. 14.
    P. Y. Chou and G. D. Fasman, Empirical predictions of protein conformation, Annu. Rev. Biochem. 47: 251 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Szilagyi and O. Jardetzky, α-Proton chemical shifts and secondary structure in proteins, J. Magn. Reson. 83: 441 (1989).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenji Takahashi
    • 1
    • 4
  • Masaru Tanokura
    • 1
    • 4
  • Hideshi Inoue
    • 1
    • 4
  • Masaki Kojima
    • 1
    • 4
  • Yutaka Muto
    • 1
    • 4
  • Makoto Yamasaki
    • 2
    • 4
  • Osamu Makabe
    • 3
    • 4
  • Takao Kimura
    • 3
    • 4
  • Toshio Takizawa
    • 1
    • 4
  • Toru Hamaya
    • 1
    • 4
  • Eiichiro Suzuki
    • 4
    • 5
  • Hiroshi Miyano
    • 4
    • 5
  1. 1.Department of Biophysics and Biochemistry, Faculty of ScienceTokyoJapan
  2. 2.Department of Chemistry, College of Arts and SciencesThe University of TokyoTokyoJapan
  3. 3.Pharmaceutical Research CenterMeiji Seika Kaisha, LtdYokohamaJapan
  4. 4.Bioscience LaboratoriesMeiji Seika Kaisha, LtdSakado-shi, SaitamaJapan
  5. 5.Central LaboratoriesAjinomoto Co., IncKawasakiJapan

Personalised recommendations