Amino Acid Sequence of Lamb Preprochymosin and its Comparison to Other Chymosins

  • Jože Pungerčar
  • Borut Štrukelj
  • Franc Gubenšek
  • Vito Turk
  • Igor Kregar
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)


Chymosin (EC is one of the most important aspartic proteinases used as a milk-clotting enzyme in cheese production. The primary structures of two calf chymosin forms (A and B) are known.1,2 The only difference in their structures is at position 302 (preprochymosin numbering). More recently, other forms of calf chymosin were also found and sequenced.3–8 Calf chymosin has been cloned in many laboratories using different expression vector/host systems. Recombinant chymosin is comparable to the wild type enzyme in cheesemaking properties.9,10 Like traditionally ušed calf rennet, lamb rennet has also been utilized in cheese making because it has similar high milk-clotting and low proteolytic activities.11 Recently, we briefly reported on the deduced amino acid sequence of lamb preprochymosin.12


Deduce Amino Acid Sequence Wild Type Enzyme Aspartic Proteinase Aspartic Acid Residue Cheese Making 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Foltmann, V. B. Pedersen, H. Jacobsen, D. Kauffman and G. Wybrandt, Proc. Natl. Acad. Sci. USA 74: 2321–2324 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    B. Foltmann, V. B. Pedersen, D. Kauffman and G. Wybrandt, J. Biol. Chem. 254: 8447–8456 (1979).PubMedGoogle Scholar
  3. 3.
    T. J. R. Harris, P. A. Lowe, A. Lyons, P. G. Thomas, M. A. W. Eaton, T. A. Millican, T. P. Patel, C. C. Bose, N. H. Carey and M. T. Doel, Nucl. Acids Res. 10: 2177–2187 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Moir, J.-I. Mao, J. W. Schumm, G. F. Vovis, B. L. Alford and A. Taunton-Rigby, Gene 19: 127–138 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    K. Nishimori, Y. Kawaguchi, M. Hidaka, T. Uozumi and T. Beppu, J. Biochem. 91: 1085–1088 (1982).PubMedGoogle Scholar
  6. 6.
    J. Maat, L. Edens, I. Bom, A. M. Ledeboer, M. Y. Toonen, C. Visser and C. T. Verrips, in: “Proc. Third Eur. Congr. Biotechnol.,” Vol. 3, pp. 193–199. Verlag Chemie, Weinheim, Germany (1984).Google Scholar
  7. 7.
    M. Hidaka, K. Sasaki, T. Uozumi and T. Beppu, Gene 43: 197–203 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    T. A. Örd, A. A. Torp and M. I. Kolmer, Biotekhnologiya 3: 307–311 (1987).Google Scholar
  9. 9.
    M. L. Green, S. Angal, P. A. Lowe and F. A. O. Marston, J. Dairy Res. 52: 281–286 (1985).CrossRefGoogle Scholar
  10. 10.
    V. E. Bines, P. Young and B. A. Law, J. Dairy Res. 56: 657–664 (1989).CrossRefGoogle Scholar
  11. 11.
    M. K. Harboe, in: “Aspartic Proteinases and Their Inhibitors,” V. Kostka, ed., pp. 537–550. Walter de Gruyter, Berlin, Germany (1989).Google Scholar
  12. 12.
    J. Pungerčar, B. Štrukelj, F. Gubenšek, V. Turk and I. Kregar, Nucl. Acids Res. 18: 4602 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    P. E. Mirkes, Anal. Biochem. 148: 376–383 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Aviv and P. Leder, Proc. Natl Acad. Sci. USA 69: 1408–1412 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Hanahan, J. Mol. Biol. 166: 557–580 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Maniatis, E. F. Fritsch and J. Sambrook, “Molecular Cloning. A Laboratory Manual,” Cold Spring Harbor Lab., Cold Spring Harbor, NY (1982).Google Scholar
  17. 17.
    M. N. G. James and A. R. Sielecki, Nature 319: 33–38 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    B. Foltmann, Biol. Chem. Hoppe-Seyler 369: 311–314 (1988).PubMedGoogle Scholar
  19. 19.
    Y. Ichihara, K. Sogawa and K. Takahashi, J. Biochem. 98: 483–492 (1985).PubMedGoogle Scholar
  20. 20.
    T. A. Örd and J. KH. Piiper, Dokl. Akad. Nauk SSSR 301: 761–764 (1988).Google Scholar
  21. 21.
    T. Örd, M. Kolmer, R. Villems and M. Saarma, Gene 91: 241–246 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Jensen, N. H. Axelsen and B. Foltmann, Biochim. Biophys. Acta 705: 249–256 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    B. Foltmann, P. Cranwell and A. Turvey, Proc. 18th Linderstroem-Lang Conf. Aspartic Proteinases, p. 82. Elsinore, Denmark, (abstract) (1988).Google Scholar
  24. 24.
    M. Baudys, T. G. Erdene, V. Kostka, M. Pavlik and B. Foltmann, Comp. Biohem. Physiol. 89B: 385–391 (1988).Google Scholar
  25. 25.
    W. J. Donnelly, D. P. Carroll, D. M. O’Callaghan and D. Walls, J. Dairy Res. 53: 657–664 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    E. M. Hallerman, A. Nave, M. Soller and J. S. Bechmann, J. Dairy Sci. 71: 3378–3389 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    D. J. McConnell, Q. Lu, Y. F. Chen, D. Hughes and D. P. Carroll, Heredity 60: 315. (abstract) (1988).Google Scholar
  28. 28.
    Q. Lu, K. H. Wolfe and D. J. McConnell, Gene 71: 135–146.(1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jože Pungerčar
    • 1
  • Borut Štrukelj
    • 1
  • Franc Gubenšek
    • 1
  • Vito Turk
    • 1
  • Igor Kregar
    • 1
  1. 1.Department of BiochemistryJ. Stefan InstituteLjubljanaYugoslavia

Personalised recommendations