Human Monocyte Chemoattractant Protein-1 (MCP-1)

  • Teizo Yoshimura
  • Edward J. Leonard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 305)


Macrophage accumulation is one of the histological characteristics of delayedype hypersensitivity (DTH) reactions, chronic inflammation, and certain kinds of tumors. Although the mechanisms of macrophage infiltration into the reaction sites are not fully understood, involvement of macrophage (monocyte) chemotactic factors produced at the reaction sites appear to be important. Those chemotactic factors can be separated into two groups; one is serum protein-derived, the other is cell-derived. A chemotactic factor that may account for massive macrophage infiltration into DTH reaction sites is lymphocyte-derived chemotactic factor (LDCF), which is produced in various species by antigen- or mitogen-stimulated spleen cells or peripheral blood mononuclear cells (PBMC) (1). Tumor cell-derived chemoattractants with similar physico-chemical characteristics have also been described, but have not been purified (2,3). On the other hand, several cytokines that were identified and purified based on their biological activities other than chemotactic activity have been reported to be chemotactic for leukocytes (4–8). Interleukin 1 was among those (4). In 1987, we succeeded in separating neutrophil chemotactic activity from IL-1 activity in the culture supernatant of LPS-stimulated human PBMC (9), and then purified the protein (10). It was initially termed monocyte-derived neutrophil chemotactic factor (MDNCF), and is now called neutrophil attractant/activation protein-1 (NAP-1). In the same supernatant we also found monocyte chemotactic activity (MCA). However, we were unable to purify the protein because of the limited supply of the supernatant. Fortunately, human malignant glioma cell lines were found to produce large amounts of MCA, with physico-chemical characteristics very similar to those of mitogen-stimulated PBMC-derived MCA (11). This discovery made it possible to purify, sequence, and clone the protein, which we call monocyte chemoattractant protein-1 (MCP-1).


Malignant Fibrous Histiocytoma Chemotactic Factor Chemotactic Activity Macrophage Stimulate Protein Scatchard Plot Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman, L. C. 1978. Chemotactic lymphokines. In Leukocyte Chemotaxis. Gallin, J.I. and Quie, P.G., eds. Raven Press, N.Y. p 267–279.Google Scholar
  2. 2.
    Meltzer, M. S., M. M. Stevenson, and E. J. Leonard. 1977. Characterization of macrophage chemotaxins in tumor cell cultures and comparison with lymphocyte-derived chemotactic factor. Cancer Res. 37: 721–725.PubMedGoogle Scholar
  3. 3.
    Bottazzi, B., N. Polentarutti, R. Acero, A. Balsari, D. Boraschi, P. Ghezzi, M. Salmona, and A. Mantovani. 1983. Regulation of macrophage content of neoplasms by chemoattractant. Science 220: 210–212.PubMedCrossRefGoogle Scholar
  4. 4.
    Luger, T. A., J. A. Charon, M. Colot, M. Micksche, and J. J. Oppenheim. 1983. Chemotactic properties of partially purified human epidermal cell-derived thymocyte-activating factor (ETAF) for polymorphonuclear and mononuclear cells. J. Immunol. 131: 816–820.PubMedGoogle Scholar
  5. 5.
    Ming, W. J., L. Bersani, and A. Mantovani. 1987. Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes. J. Immunol. 138: 1469–1474.PubMedGoogle Scholar
  6. 6.
    Wang, J. M., S. Colella, P. Allavena, and A. Mantovani. 1987. Chemotactic activity of human recombinant granulocyte-macrophage colony-stimulating factor. Immunology 60: 439–444.PubMedGoogle Scholar
  7. 7.
    Wang, J. M., J. D. Griffm, A. Rambaldi, Z. G. Chen, and A. Mantovani. 1988. Induction of monocyte migration by recombinant macrophage colony-stimulating factor. J. Immunol. 141: 575–579.PubMedGoogle Scholar
  8. 8.
    Wahl, S. M., D. A. Hunt, L. M. Wakefield, N. McCartney-Francois, L. M. Wahl, A. B. Roberts, and M. B. Sporn. 1987. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc. Natl. Acad. Sci. USA. 84: 5788–5792.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshimura, T., K. Matsushima, J. J. Oppenheim, and E. J. Leonard. 1987. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J. Immunol. 139: 788–793.PubMedGoogle Scholar
  10. 10.
    Yoshimura, T., K. Matsushima, S. Tanaka, E. A. Robinson, E. Appella, J. J. Oppenheim, and E. J. Leonard. 1987. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc. Natl. Acad. Sci. USA. 84: 9233–9237.PubMedCrossRefGoogle Scholar
  11. 11.
    Kuratsu, J., E. J. Leonard, and T. Yoshimura. 1989. Production and characterization of human glioma-derived monocyte chemotactic factor. J. Natl. Cancer Inst. 81: 347–351.PubMedCrossRefGoogle Scholar
  12. 12.
    Yoshimura, T., E. A. Robinson, S. Tanaka, E. Appella, J. Kuratsu, and E. J. Leonard. 1989. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J. Exp. Med. 169: 1449–1459.PubMedCrossRefGoogle Scholar
  13. 13.
    Yoshimura, T., and E. J. Leonard. 1990. Secretion by human fibroblasts of monocyte chemoattractant protein-1 (MCP-1), the product of gene JE. J. Immunol. 144: 2377–2383.PubMedGoogle Scholar
  14. 14.
    Richmond, A., E. Balentien, H. G. Thomas, G. Flaggs, D. E. Barton, J. Spiess, R. Bordoni, U. Francke, and R. Derynck. 1988. Molecular characterization and chromosomal mapping of melanoma growth stimulating activity, a growth factor structurally related to β-thromboglobulin. EMBO J. 7: 2025–2033.PubMedGoogle Scholar
  15. 15.
    Yoshimura, T., E. A. Robinson, S. Tanaka, E. Appella, and E. J. Leonard. 1989. Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J. Immunol. 142: 1956–1962.PubMedGoogle Scholar
  16. 16.
    Takeya, M., T. Yoshimura, E. J. Leonard, T. Kato, H. Okabe, and K. Takahashi. Production of monocyte chemotactic protein-1 (MCP-1) by malignant fibrous histiocytoma. Submitted.Google Scholar
  17. 17.
    Robinson, E. A., T. Yoshimura, E. J. Leonard, S. Tanaka, P. R. Griffin, J. Shabanowitz, D. F. Hunt, and E. Appella. 1989. Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Proc. Natl. Acad. Sci. USA. 86: 1850–1854.PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshimura, T., N. Yuhki, S. K. Moore, E. Appella, M. I. Lerman, and E. J. Leonard: Human monocyte chemoattractant protein-1 (MCP-1). 1989. Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Letters 244: 487–493.Google Scholar
  19. 19.
    Caput, D., B. Beutler, K. Hartog, R. Thayer, S. Brown-Shimer, and A. Cerami. 1986. Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA molecules specifying inflammatory madiators. Proc. Natl. Acad. Sci. USA. 83: 1670–1674.PubMedCrossRefGoogle Scholar
  20. 20.
    Begg, G. S., D. S. Pepper, C. N. Chesterman, and F. J. Morgan. 1978. Complete covalent structure of human β-thromboglobulin. Biochemistry 17: 1739–1744.PubMedCrossRefGoogle Scholar
  21. 21.
    Tanaka, S., E. A. Robinson, T. Yoshimura, K. Matsushima, E. J. Leonard, and E. Appella. 1988. Synthesis and biological characterization of monocyte-derived neutrophil chemotactic factor. FEBS Letters 236: 467–470.PubMedCrossRefGoogle Scholar
  22. 22.
    Rot, A., L. E. Henderson, T. D. Copeland, and E. J. Leonard. 1987. A Series of six ligands for the human formyl peptide receptor: tetra peptides with high chemotactic potency and efficacy. Proc. Natl. Acad. Sci. USA. 84: 7967–7971.PubMedCrossRefGoogle Scholar
  23. 23.
    Leonard, E.J., A. Shenai, and A. Skeel. 1987. Dynamics of chemotactic peptide-induced superoxide generation by human monocytes. Inflammation. 11: 229–240.PubMedCrossRefGoogle Scholar
  24. 24.
    Adams, D.O., and T. A. Hamilton. 1988. Activation of macrophages for tumor cell kill: Effector mechanisms and regulation. In Heppner, G.H. and Fulton, A.M. Macrophages and Cancer, CRC, Press Inc., Boca Raton, FL., pp 27–38.Google Scholar
  25. 25.
    Ruco, L.P., and M. S. Meltzer. 1978. Macrophage activation for tumor cytotoxicity: Development of macrophage cytotoxic activity requires completion of short-lived intermediary reactions. J. Immunol. 121: 2035–2042.PubMedGoogle Scholar
  26. 26.
    Leonard, E.J. and A. Skeel. 1978. Isolation of macrophage stimulation protein (MSP) from human serum. Exp. Cell Res. 114: 117–126.PubMedCrossRefGoogle Scholar
  27. 27.
    Matsushima, K., C. G. Larsen, G. C. DuBois, and J. J. Oppenheim. 1989. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med. 169: 1485–1490.PubMedCrossRefGoogle Scholar
  28. 28.
    Yoshimura, T., and E. J. Leonard. 1990. Identification of high affinity receptors for human monocyte chemoattractant protein-1 on human monocytes. J. Immunol. in press.Google Scholar
  29. 29.
    Cochran, B. J., A. C. Reffel, and C. D. Stiles. 1983. Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 33: 939–947.PubMedCrossRefGoogle Scholar
  30. 30.
    Rollins, B. J., P. Stier, T. Ernst, and G. G. Wong. 1989. The human homologue of the JE gene encodes a monocyte secretory protein. Mol. Cell Biol. 9: 4687–4695.PubMedGoogle Scholar
  31. 31.
    Kaczmarek, B., B. Calabretta, and R. Baserga. 1985. Expression of cell-cycle-dependent genes in phytohemagglutinin-stimulated human lymphocytes. Proc. Natl. Acad. Sci. USA. 82: 5375–5379.PubMedCrossRefGoogle Scholar
  32. 32.
    Introna, M., R. C. Bast, Jr., C. S. Tannenbaum, T. A. Hamilton, and D. O. Adams. 1987. The effect of LPS on expression of the early “competence” genes JE and KC in murine peritoneal macrophages. J. Immunol. 138: 3891–3896.PubMedGoogle Scholar
  33. 33.
    Rollins, B. J., E. D. Morrison, and C. D. Stiles. 1988. Cloning and expression of JE, a gene inducible by platelet-derived growth factor and whose product has cytokine properties. Proc. Natl. Acad. Sci. USA. 85: 3738–3742.PubMedCrossRefGoogle Scholar
  34. 34.
    Zullo, J.N., B. H. Cochran, A. S. Huang, and C. D. Stiles. 1985. Platelet-derived growth factor anddouble-stranded ribonucleic acids stimulate expression of the same genes in 3T3 cells. Cell 43: 793–800.PubMedCrossRefGoogle Scholar
  35. 35.
    Takehara, K., E. C. LeRoy, and G. R. Grotendorst. 1987. TGF-β inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell 49: 415–422.PubMedCrossRefGoogle Scholar
  36. 36.
    Prpic, V., S-F. Yu, F. Figueiredo, P. W. Hollenbach, G. Gawdi, B. Herman, R. J. Uhing, and D. O. Adams. 1989. Role of Na + /H+ exchange by interferon-gamma in enhanced expression of JE and I-Aβ genes. Science 244: 469–471.PubMedCrossRefGoogle Scholar
  37. 37.
    Decock, B., R. Conings, J-P. Lenaeerts, A. Billiau, and J. Van Damme. 1990. Identification of the monocyte chemotactic protein from human osteosarcoma cells and monocytes: Detection of a novel N-terminally processed form. Biochem. Biophys. Res. Commun. 167: 904–909.PubMedCrossRefGoogle Scholar
  38. 38.
    Larsen, C. G., C. O. C. Zachariae, J. J. Oppenheim, and K. Matsushima. 1989. Production of monocyte chemotactic and activating factor (MCAF) by human dermal fibroblasts in response to interleukin 1 or tumor necrosis factor. Biochem. Biophys. Res. Commun. 160: 1403–1408.PubMedCrossRefGoogle Scholar
  39. 39.
    Strieter, R. M., R. Wiggins, S. H. Phan, B. L. Wharram, H. J. Showell, D. G. Remick, S. W. Chensue, and S. L. Kunkel. 1989. Monocyte chemotactic protein gene expression by cytokinetreated human fibroblasts and endothelial cells. Biochem. Biophys. Res. Commun. 162: 694–700.PubMedCrossRefGoogle Scholar
  40. 40.
    Van Damme, J., B. Decock, J-P. Lenaerts, R. Conings, R. Bertini, A. Mantovani, and A. Billiau. 1990. Identification by sequence analysis of chemotactic factors for monocytes produced by normal and transformed cells stimulated with virus, double-stranded RNA or cytokine. Eur. J. Immunol. 19: 2367–2373.CrossRefGoogle Scholar
  41. 41.
    Dixit, V., S. Green, V. Sarma, L. B. Holzman, F. W. Wolf, K. O’Rourke, P. A. Ward, E. V. Prochownik, and R. M. Marks. 1990. Tumor necrosis factor-α induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J. Biol. Chem. 265: 2973–2978.PubMedGoogle Scholar
  42. 42.
    Sica, A., J. M. Wang, F. Colotta, E. Dejana, A. Mantovani, J. J. Oppenheim, C. G. Larsen, C. O. C. Zachariae, and K. Matsushima. 1990. Monocyte chemotactic and activating factor gene expression induced in endothelial cells by IL-1 and tumor necrosis factor. J. Immunol. 144: 3034–3038.PubMedGoogle Scholar
  43. 43.
    Rollins, B. J., T. Yoshimura, E. J. Leonard, and J. S. Pober. 1990. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP- /JE. Am. J. Pathol. in press.Google Scholar
  44. 44.
    Valente, A. J., D. T. Graves, C. E. Vialle-Valentin, R. Delgado, and C. J. Schwartz. 1988. Purification of a monocyte chemotactic factor secreted by nonhuman primate vascular cells in culture. Biochemistry 27: 4162–4168.PubMedCrossRefGoogle Scholar
  45. 45.
    Graves, D. T., Y. L. Jiang, M. J. Williamson, and A. J. Valente. 1989. Identification of monocyte chemotactic activity produced by malignant cells. Science 245: 1490–1493.PubMedCrossRefGoogle Scholar
  46. 46.
    Furutani, Y., H. Nomura, M. Notake, Y. Oyamada, T. Fukui, M. Yamada, C. G. Larsen, J. J. Oppenheim, and K. Matsushima. 1989. Cloning and sequencing of the cDNA for human monocyte chemotactic and activating factor (MCAF). Biochem. Biophys. Res. Commun. 159: 249– 255.PubMedCrossRefGoogle Scholar
  47. 47.
    Nister, M., A. Hammacher, K. Mellstrom, A. Siegbahn, L. Ronnstrand, B. Westermark, and CH. Heldin. 1988. A glioma-derived PDGF A chain homodimer has different functional activities from a PDGF AB heterodimer purified from human platelets. Cell 52: 791–799.PubMedCrossRefGoogle Scholar
  48. 48.
    Bowen-Pope, D.F., C. E. Hart, and R. A. Seifert. 1989. Sera and conditioned media contain different isomer of platelet-derived growth factor (PDGF) which bind to different classes of PDGF receptor. J. Biol. Chem. 264: 2502–2508.PubMedGoogle Scholar
  49. 49.
    Rosenstreich, D.L., J. J. Farrar, and S. Dougherty. 1976. Absolute macrophage dependency of T lymphocyte activation by mitogens. J. Immunol. 116: 131–139.PubMedGoogle Scholar
  50. 50.
    Gerrity, R.G., H. K. Naito, M. Richardson, and C. J. Schwartz. 1979. Dietary induced atherogenesis in swine. Am. J. Pathol. 95: 775–792.PubMedGoogle Scholar
  51. 51.
    Fulton, A.M. 1988. Tumor associated macrophages. In Macrophages and Cancer, Heppner, G.H. and Fulton, A.M., eds. CRC Press, Boca Raton, FL. pp 97–111.Google Scholar
  52. 52.
    Bottazzi, B., F. Colotta, A. Sica, N. Nobili, and A. Mantovani. 1990. A chemoattractant expressed in human sarcoma cells (tumor-derived chemotactic factor, TDCF) is identical to monocyte chemoattractant protein-1/monocyte chemotactic and activating factor (MCP/ MCAF). Int. J. Cancer 45: 795–797.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Teizo Yoshimura
    • 1
  • Edward J. Leonard
    • 1
  1. 1.Laboratory of ImmunobiologyNational Cancer InstituteFrederickUSA

Personalised recommendations