Formation and Biological Properties of Neutrophil Activating Peptide 2 (NAP-2)

  • Alfred Walz
  • Roland Zwahlen
  • Marco Baggiolini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 305)


Neutrophil-activating peptide 2 (NAP-2) was isolated from stimulated cultures of human blood mononuclear cells (1). NAP-2 consists of 70 amino acids and is structurally related to NAP-1/IL-8 (2), a peptide produced by a variety of cells upon induction with interleukin-1 or tumor necrosis factor alpha (3), and to melanoma growth-stimulatory activity (MGSA) which was shown to be mitogenic for cultured human melanoma cells (4, 5). NAP-1/IL-8 and MGSA are potent chemotactic agents for human neutrophils in vitro and in vivo (6, 7), and induce cytosolic free calcium changes, the respiratory burst and exocytosis (8). The amino acid sequence of NAP-2 corresponds to part of the sequence of platelet basic protein (PBP) (9) and its derivative, connective tissue activating peptide III (CTAP-III, ref 10) and to other inactive cleavage products which were recently identified (11). NAP-2 also shows structural homology to platelet factor 4 (PF-4), another peptide contained in the platelet alpha granules (12).


Human Neutrophil Respiratory Burst Adult Respiratory Distress Syndrome Platelet Factor Lower Dermis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walz A., and M. Baggiolini. 1989. A novel cleavage product of β-thromboglobulin formed in cultures of stimulated mononuclear cells activates human neutrophils. Biochem. Biophys. Res. Commun. 159: 969–975.PubMedCrossRefGoogle Scholar
  2. 2.
    Walz A., P. Peveri, H. Aschauer, and M. Baggiolini. 1987. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem. Biophys. Res. Commun. 149: 755–761.PubMedCrossRefGoogle Scholar
  3. 3.
    Baggiolini M., A. Walz, and S.L. Kunkel. 1989. Neutrophil-activating peptide-1/interleukin-8, a novel cytokine that activates neutrophils. J. Clin. Invest. 84: 1045–1049.PubMedCrossRefGoogle Scholar
  4. 4.
    Anisowicz A., L. Bardwell, and R. Sager. 1987. Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells. Proc. Natl. Acad. Sci. USA 84: 7188–7192.PubMedCrossRefGoogle Scholar
  5. 5.
    Richmond A., E. Balentien, H.G. Thomas, G. Flaggs, D.E. Barton, J. Spiess, R. Bordoni, U. Francke, and R. Derynck. 1988. Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to β-thromboglobulin. EMBO J. 7: 2025–2033.PubMedGoogle Scholar
  6. 6.
    Moser B., I. Clark-Lewis, R. Zwahlen, and M. Baggiolini. 1990. Neutrophil-activating properties of the melanoma growth-stimulatory activity. J. Exp. Med. 171: 1797–1802.PubMedCrossRefGoogle Scholar
  7. 7.
    Yoshimura T.K., K. Matsushima, J.J. Oppenheim, and E. Leonard. 1987. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: Partial characterization and separation from interleukin 1 (IL-1). J. Immunol. 139: 788–793.PubMedGoogle Scholar
  8. 8.
    Peveri P., A. Walz, B. Dewald, M. Baggiolini. 1988. A novel neutrophil-activating factor produced by human mononuclear phagocytes. J. Exp. Med. 167: 1547–1560.PubMedCrossRefGoogle Scholar
  9. 9.
    Holt J.C., M.E. Harris, A.M. Holt, E. Lange, A. Henschen, and S. Niewiarowski. 1986. Characterization of human platelet basic protein, a precursor form of low-affinity platelet factor 4 and β-thromboglobulin. Biochemistry 25: 1988–1996.PubMedCrossRefGoogle Scholar
  10. 10.
    Castor C.W., J.W. Miller, D.A. Walz. 1983. Structural and biological characteristics of connective tissue activating peptide (CTAP-III), a major human platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 80: 765–769.PubMedCrossRefGoogle Scholar
  11. 11.
    Van Damme J., J. Van Beeumen, R. Conings, B. Decock, and A. Billiau. 1989. Purification of granulocyte chemotactic peptide/interleukin-8 reveals N-terminal sequence heterogeneity similar to that of β-thromboglobulin. Eur. J. Biochem. 181: 337–344.PubMedCrossRefGoogle Scholar
  12. 12.
    Deuel T.F., P.S. Keim, M. Farmer, and R.L. Heinrikson. 1977. Amino acid sequence of human platelet factor 4. Proc. Natl. Acad. Sci. USA 74: 2256–2258.PubMedCrossRefGoogle Scholar
  13. 13.
    Walz A., and M. Baggiolini. 1990. Generation of the neutrophil-activating peptide NAP-2 from platelet basic protein or connective tissue activating peptide III through monocyte proteases. J. Exp. Med. 171: 449–454.PubMedCrossRefGoogle Scholar
  14. 14.
    Wenger R.H., A. Wicki, A. Walz, N. Kieffer, and K.J. Clemetson. 1989. Cloning of cDNA coding for connective tissue activating peptide III from a human platelet derived lambda gt11 expression library. Blood 73: 1498–1503.PubMedGoogle Scholar
  15. 15.
    Castor C.W., D.A. Walz, P.A. Ragsdale, E.M. Hossler, M.C. Bignall, B.P. Aaron, and K. Mountjoy. 1989. Connective tissue activation. XXXIII. Biologically active cleavage products of CTAP-III from human platelets. Biochem. Biophys. Res. Commun. 163: 1071–1078.PubMedCrossRefGoogle Scholar
  16. 16.
    Walz A., B. Dewald, V. von Tscharner, and M. Baggiolini. 1989. Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue activating peptide III and platelet factor 4 on human neutrophils. J. Exp. Med. 170: 1745–1750.PubMedCrossRefGoogle Scholar
  17. 17.
    Schroeder J.M., U. Mrowietz, E. Morita, and E. Christophers. 1987. Purification and partial characterization of a human monocyte-derived, neutrophil-activating peptide that lacks interleukin 1 activity. J. Immunol. 139: 3474–3483.Google Scholar
  18. 18.
    Walz A., B. Dewald, and M. Baggiolini. 1990. Formation and biological activity of NAP-2, a neutrophil-activating peptide derived from platelet α-granule precursors, in: Molecular and cellular biology of cytokines edited by J.J. Oppenheim, M.C. Powanda, M.J. Kluger and C.A. Dinarello. Alan A. Liss, Inc., New York, in press.Google Scholar
  19. 19.
    Deuel T.F., R.M. Senior, D. Chang, G.L. Griffin, R.L. Heinrikson, and E.T. Kaiser. 1981. Platelet factor 4 is chemotactic for neutrophils and monocytes. Proc. Natl. Acad. Sci. USA 78: 4584–4587.PubMedCrossRefGoogle Scholar
  20. 20.
    Baggiolini M„ B. Dewald. 1984. Exocytosis by neutrophils. Contemp. Top. Immunobiol. 14: 221–246.PubMedGoogle Scholar
  21. 21.
    Lindley I., H. Aschauer, J.M. Seiffert, C. Lam, W. Brunowsky, E. Kownatzky, M. Thelen, P. Peveri, B. Dewald, V. von Tscharner, A. Walz, and M. Baggiolini. 1988. Synthesis and expression in Escherichia coli of the gene encoding monocyte-derived neutrophil-activating factor: biological equivalence between natural and recombinant neutrophil-activating factor. Proc. Natl. Acad. Sci. USA 85: 9199–9202.PubMedCrossRefGoogle Scholar
  22. 22.
    Wachtvogel Y.T., U. Kucich, J. Greenplate, P. Gluszko, W. Abrams, G. Weinbaum, R.K. Wenger, B. Rucinski, S. Niewiaroski, L.H. Edmunds Jr., et al. 1987. Human neutrophil degranulation during extracorporeal circulation. Blood 69: 324–330.Google Scholar
  23. 23.
    Van Oeveren W., M.D. Kazatchkine, B. Descamps-Latscha, F. Maillet, E. Fischer, A. Carpentier, and C.R. Wildevuur. 1985. Deleterious effects of cardiopulmonary bypass. A prospective study of bubble versus membrane oxygenation. J. Tliorac. Cardiovasc. Surg. 89: 888–899.Google Scholar
  24. 24.
    Idell S., R. Maunder, A.M. Fein, H.I. Swirtalska, G.P. Tuszynski, J. McLarty, and S. Niewiarowsky. 1989. Platelet-specific α-granule proteins and thrombospondin in bronchoalveolar lavage in the adult respiratory distress syndrome. Chest 96: 1125–1132.PubMedCrossRefGoogle Scholar
  25. 25.
    Oswald G.A., C.C. Smith, A.P. Delamothe, D.J. Betteridge, and J.S. Yudkin. 1988. Raised concentrations of glucose and adrenaline and increased in vivo platelet activation after myocardial infarction. Br. Heart. J. 59: 663–710.PubMedCrossRefGoogle Scholar
  26. 26.
    Woo E., C.Y. Huang, V. Chan, Y.W. Chan, Y.L. Yu, and T.K. Chan. 1988. β-thromboglobulin in cerebral infarction. J. Neurol. Neurosurg. Psychiatry 51: 557–562.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Alfred Walz
    • 1
  • Roland Zwahlen
    • 2
  • Marco Baggiolini
    • 1
  1. 1.Theodor-Kocher InstituteUniversity of BernBern 9Switzerland
  2. 2.Institute for Veterinary PathologyUniversity of BernBern 9Switzerland

Personalised recommendations