Activation of Human Neutrophils by NAP-1 and Other Chemotactic Agonists

  • Marco Baggiolini
  • Beatrice Dewald
  • Alfred Walz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 305)


The neutrophils normally circulate passively in the blood and are recruited at sites of infection or inflammation by chemotactic agonists that turn them on and direct their migration into the tissues. The adhesion to the venular endothelium, the passage through the vessel wall and the directed movement in the interstitium are complex events involving motile and secretory functions. Three main responses of neutrophils, the shape change, the exocytosis of storage components, and the respiratory burst can be analyzed in real time in vitro, and we shall describe here how these responses are induced by NAP-1 and other chemotactic agonists.


NADPH Oxidase Human Neutrophil Phorbol Ester Respiratory Burst Chronic Granulomatous Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wymann, M.P., P. Kernen, D.A. Deranleau, B. Dewald, V. von Tscharner, and M. Baggiolini. 1987. Oscillatory motion in human neutrophils responding to chemotactic stimuli. Biochem. Biophys. Res. Commun. 147: 361–368.PubMedCrossRefGoogle Scholar
  2. 2.
    Thelen, M., P. Peveri, P. Kernen, V. von Tscharner, A. Walz, and M. Baggiolini. 1988. Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB. J. 2: 2702– 2706.PubMedGoogle Scholar
  3. 3.
    Bretz, U., and M. Baggiolini. 1974. Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes. J.Cell Biol. 63: 251–269.PubMedCrossRefGoogle Scholar
  4. 4.
    Spitznagel, J.K, F. Dallegri, M.S. Leffell, J.D. Folds, I.R.H. Welsh, M.H. Cooney, and L.E. Martin. 1974. Character of azurophil and specifis granules purified from human polymorphonuclear leukocytes. Lab. Invest. 30: 774–785.PubMedGoogle Scholar
  5. 5.
    Baggiolini, M., J. Schnyder, U. Bretz, B. Dewald, and W. Ruch. 1980. Cellular mechanisms of proteinase release from inflammatory cells and the degradation of extracellular proteins. Ciba. Found. Symp. 75: 105–121.Google Scholar
  6. 6.
    Dewald, B., U. Bretz, and M. Baggiolini. 1982. Release of gelatinase from a novel secretory compartment of human neutrophils. J. Clin. Invest. 70: 518–525.PubMedCrossRefGoogle Scholar
  7. 7.
    Hibbs, M.S., and D.F. Bainton. 1989. Human neutrophil gelatinase is a component of specific granules. J. Clin. Invest. 84: 1395–1402.PubMedCrossRefGoogle Scholar
  8. 8.
    Borregaard, N., LJ. Miller, and T.A. Springer. 1987. Chemoattractant-regulated mobilization of a novel intracellular compartment in human neutrophils. Science 237: 1204–1206.PubMedCrossRefGoogle Scholar
  9. 9.
    Borregaard, N., L. Christensen, O.W. Bjerrum, H.S. Birgens, and I. Clemmensen. 1990. Identification of a highly mobilizable subset of human neutrophil intracellular vesicles that contains tetranectin and latent alkaline phosphatase. J. Clin. Invest. 85: 408–416.PubMedCrossRefGoogle Scholar
  10. 10.
    Fearon, D.T., and L.A. Collins. 1983. Increased expression of C3b receptors on polymorphonuclear leukocytes induced by chemotactic factors and by purification procedures. J.Immunol. 130: 370–375.PubMedGoogle Scholar
  11. 11.
    Fletcher, M.P., B.E. Seligmann, and J.I. Gallin. 1982. Correlation of human neutrophil secretion, chemoattractant receptor mobilization and enhanced functional capacity. J. Immunol. 128: 941–948.PubMedGoogle Scholar
  12. 12.
    O Shea, J.J., EJ. Brown, B.E. Seligmann, J.A. Metcalf, M.M. Frank, and J.I. Gallin. 1985. Evidence for distinct intracellular pools of receptors C3b and C3bi in human neutrophils. J. Immunol. 134: 2580–2587.Google Scholar
  13. 13.
    Bainton, D.F., L.J. Miller, T.K. Kishimoto, and T.A. Springer. 1987. Leukocyte adhesion receptors are stored in peroxidase-negative granules of human neutrophils. J. Exp. Med. 166: 1641–1653.PubMedCrossRefGoogle Scholar
  14. 14.
    Singer, I.I., S. Scott, D.W. Kawka, and D.M. Kazazis. 1989. Adhesomes: specific granules containing receptors for laminin, C3bi/fibrinogen, fibronectin and vitronectin in human polymorphonuclear leukocytes and monocytes. J. Cell Biol. 109: 3169–3182.PubMedCrossRefGoogle Scholar
  15. 15.
    Segal, A.W., and O.T.G. Jones. 1979. The subcellular distribution and some properties of the cytochrome b component of the microbicidal oxidase system of human neutrophils. Biochem. J. 182: 181–188.PubMedGoogle Scholar
  16. 16.
    Baggiolini, M., and B. Dewald. 1984. Exocytosis by neutrophils. Contemp. Top. Immunobiol. 14: 221–246.PubMedGoogle Scholar
  17. 17.
    Peveri, P., A. Walz, B. Dewald, and M. Baggiolini. 1988. A novel neutrophil-activating factor produced by human mononuclear phagocytes. J. Exp. Med. 167: 1547–1559.PubMedCrossRefGoogle Scholar
  18. 18.
    Paccaud, J.-P., J.A. Schifferli, and M. Baggiolini. 1990. NAP-1/IL-8 induces upregulation of CRl receptors in human neutrophil leukocytes. Biochem. Biophys. Res. Commun. 166: 187–192.PubMedCrossRefGoogle Scholar
  19. 19.
    Detmers, P.A., S.K. Lo, E. Olsen-Egbert, A. Walz, M. Baggiolini, and Z.A. Cohn. 1990. Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CDllb/CD18 on human neutrophils. J. Exp. Med. 171: 1155–1162.PubMedCrossRefGoogle Scholar
  20. 20.
    Walz, A., P. Peveri, H. Aschauer, and M. Baggiolini. 1987. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem. Biophys. Res. Commun. 149: 755–761.PubMedCrossRefGoogle Scholar
  21. 21.
    Markert, M., P.C. Andrews, and B.M. Babior. 1984. Measurement of O2-production by human neutrophils. The preparation and assay of NADPH oxidase-containing particles from human neutrophils. Methods. Enzymol 105: 358–365.PubMedCrossRefGoogle Scholar
  22. 22.
    Thelen, M., M. Wolf, and M. Baggiolini. 1988. Activation of monocytes by interferon-gamma has no effect on the level or affinity of the nicotinamide adenine dinucleotide-phosphate oxidase and on agonist-dependent superoxide formation. J. Clin. Invest. 81: 1889–1895.PubMedCrossRefGoogle Scholar
  23. 23.
    Pick, E., and D. Mizel. 1981. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J. Immunol. Methods. 46: 211–226.PubMedCrossRefGoogle Scholar
  24. 24.
    Hyslop, P.A., and L.A. Sklar. 1984. A quantitative fluorimetric assay for the determination of oxidant production by polymorphonuclear leukocytes: its use in the simultaneous fluorimetric assay of cellular activation processes. Anal. Biochem. 141: 280–286.PubMedCrossRefGoogle Scholar
  25. 25.
    Ruch, W., P.H. Cooper, and M. Baggiolini. 1983. Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse-radish peroxidase. J. Immunol. Methods. 63: 347–357.PubMedCrossRefGoogle Scholar
  26. 26.
    Wymann, M.P., V. von Tscharner, D.A. Deranleau, and M. Baggiolini. 1987. Chemiluminescence detection of H2O2 produced by human neutrophils during the respiratory burst. Anal. Biochem. 165: 371–378.PubMedCrossRefGoogle Scholar
  27. 27.
    McPhail, L.C., P.S. Shirley, C.C. Clayton, and R. Snyderman. 1985. Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. Evidence for a soluble cofactor. J. Clin. Invest. 75: 1735–1739.PubMedCrossRefGoogle Scholar
  28. 28.
    Curnutte, J.T. 1985. Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J. Clin. Invest. 75: 1740–1743.PubMedCrossRefGoogle Scholar
  29. 29.
    Babior, B.M., J.T. Curnutte, and N. Okamura. 1988. The respiratory burst oxidase and certain members of the 48kD phosphoprotein familly are associated with the neutrophil cytoskeleton. Blood 72 (5), suppl.1: 141a–141a.Google Scholar
  30. 30.
    Segal, A.W., and O.T. Jones. 1978. Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276: 515–517.PubMedCrossRefGoogle Scholar
  31. 31.
    Royer Pokora, B., L.M. Kunkel, A.P. Monaco, S.C. Goff, P.E. Newburger, R.L. Baehner, F.S. Cole, J.T. Curnutte, and S.H. Orkin. 1986. Cloning the gene for an inherited human disorder — chronic granulomatous disease — on the basis of its chromosomal location. Nature 322: 32–38.PubMedCrossRefGoogle Scholar
  32. 32.
    Parkos, C.A., M.C.. Dinauer, L.E. Walker, R.A. Allen, A.J. Jesaitis, and S.H. Orkin. 1988. Primary structure and unique expression of the 22-kilodalton light chain of human neutrophil cytochrome b. Proc. Natl. Acad. Sci. USA 85: 3319–3323.PubMedCrossRefGoogle Scholar
  33. 33.
    Nugent, J.H.A., W. Gratzer, and A.W. Segal. 1989. Identification of the haem-binding subunit of cytochrome b 245. Biochem. J. 264: 921–924.PubMedGoogle Scholar
  34. 34.
    Cross, A.R., O.T. Jones, A.M. Harper, and A.W. Segal. 1981. Oxidation-reduction properties of the cytochrome-b found in the plasma-membrane fraction of human neutrophils: a possible oxidase in the respiratory burst. Biochem. J. 194: 599–607.PubMedGoogle Scholar
  35. 35.
    Prince, R.C., and D.E. Gunson. 1987. Superoxide production by neutrophils. Trends Biochem. Sci. 12: 86–87.CrossRefGoogle Scholar
  36. 36.
    Quinn, M.T., C.A. Parkos, L. Walker, S.H. Orkin, M.C. Dinauer, and A.J. Jesaitis. 1989. Association of a Ras-related protein with cytochrome b of human neutrophils. Nature 342: 198– 200.PubMedCrossRefGoogle Scholar
  37. 37.
    Doussiere, J., and P.V. Vignais. 1985. Purification and properties of an O2-.-generating oxidase from bovine polymorphonuclear neutrophils. Biochemistry. 24: 7231–7239.PubMedCrossRefGoogle Scholar
  38. 38.
    Markert, M., G.A. Glass, and B.M. Babior. 1985. Respiratory burst oxidase from human neutrophils: purification and some properties. Proc. Natl. Acad. Sci. USA 82: 3144–3148.PubMedCrossRefGoogle Scholar
  39. 39.
    Henderson, L.M., J.B. Chappell, and O.T. Jones. 1987. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem. J. 246: 325– 329.PubMedGoogle Scholar
  40. 40.
    Henderson, L.M., J.B. Chappell, and O.T. Jones. 1988. Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge. Biochem. J. 255: 285–290.PubMedGoogle Scholar
  41. 41.
    Cross, A.R., and O.T. Jones. 1986. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem. J. 237: 111–116.PubMedGoogle Scholar
  42. 42.
    Yea, C.M., A.R. Cross, and O.T.G. Jones. 1990. Purification and some properties of the 45 kDa diphenylene iodonium-binding flavoprotein of neutrophil NADPH oxidase. Biochem. J. 265: 95–100.PubMedGoogle Scholar
  43. 43.
    Curnutte, J.T., P.J. Scott, and L.A. Mayo. 1989. Cytosolic components of the respiratory burst oxidase: Resolution of four components, two of which are missing in complementing types of chronic granulomatous disease. Proc. Natl. Acad. Sci. USA 86: 825–829.PubMedCrossRefGoogle Scholar
  44. 44.
    Leto, T.L., K.J. Lomax, B.D. Volpp, H. Nunoi, J.M.G. Sechler, W.M. Nauseef, R.A. Clark, J.I. Gallin, and H.L. Malech. 1990. Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src. Science 248: 727–730.PubMedCrossRefGoogle Scholar
  45. 45.
    Kramer, I.M., A.J. Verhoeven, Bend.R.L. van der, R.S. Weening, and D. Roos. 1988. Purified protein kinase C phosphorylates a 47-kDa protein in control neutrophil cytoplasts but not in neutrophil cytoplasts from patients with the autosomal form of chronic granulomatous disease. J. Biol. Chem. 263: 2352–2357.PubMedGoogle Scholar
  46. 46.
    Okamura, N., S.E. Malawista, R.L. Roberts, H. Rosen, H.D. Ochs, B.M. Babior, and J.T. Curnutte. 1988. Phosphorylation of the oxidase-related 48K phosphoprotein family in the unusual autosomal cytochrome-negative and X-linked cytochrome-positive types of chronic granulomatous disease. Blood 72: 811–816.PubMedGoogle Scholar
  47. 47.
    Heyworth, P.G., C.F. Shrimpton, and A.W. Segal. 1989. Localization of the 47kDa phosphoprotein involved in the respiratory-burst NADPH oxidase of phagocytic cells. Biochem. J. 260: 243–248.PubMedGoogle Scholar
  48. 48.
    Clark, R.A., B.D. Volpp, K.G. Leidal, and W.M. Nauseef. 1990. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J. Clin. Invest. 85: 714–721.PubMedCrossRefGoogle Scholar
  49. 49.
    Doussiere, J., F. Laporte, and P.V. Vignais. 1986. Photolabeling of a O2-generating protein in bovine polymorphonuclear neutrophils by an arylazido NADP+ analog. Biochem. Biophys. Res. Commun. 139: 85–93.PubMedCrossRefGoogle Scholar
  50. 50.
    Umei, T., K. Takeshige, and S. Minakami. 1987. NADPH-binding component of the superoxide-generating oxidase in unstimulated neutrophils and the neutrophils from the patients with chronic granulomatous disease. Biochem. J. 243: 467–472.PubMedGoogle Scholar
  51. 51.
    Smith, R.M., J.T. Curnutte, and B.M. Babior. 1989. Affinity labeling of the cytosolic and membrane components of the respiratory burst oxidase by the 2’,3’-dialdehyde derivative of NADPH. Evidence for a cytosolic location of the nucleotide-binding site in the resting cell. J. Biol. Chem. 264: 1958–1962.PubMedGoogle Scholar
  52. 52.
    Curnutte, J.T., and B.M. Babior. 1987. Chronic granulomatous disease. Adv.Hum.Genet.l6: 229–297.Google Scholar
  53. 53.
    Clark, R.A., H.L. Malech, J.I. Gallin, H. Nunoi, B.D. Volpp, D.W. Pearson, W.M. Nauseef, and J.T. Curnutte. 1989. Genetic Variants of Chronic Granulomatous Disease: Prevalence of Deficiencies of Two Cytosolic Components of the NADPH Oxidase System. N. Engl. J. Med. 312: 647–652.CrossRefGoogle Scholar
  54. 54.
    Weening, R.S., L. Corbeel, M. de Boer, R. Lutter, R. van Zwieten, and D. Roos. 1985. Cytochrome b deficiency in an autosomal form of chronic granulomatous disease: a third form of chronic granulomatous disease recognized by monocyte hybridization. J. Clin. Invest. 75: 915– 920.PubMedCrossRefGoogle Scholar
  55. 55.
    Wymann, M.P., V. von Tscharner, D.A. Deranleau, and M. Baggiolini. 1987. The onset of the respiratory burst in human neutrophils. Real-time studies of H2O2 formation reveal a rapid agonist-induced transduction process. J. Biol. Chem. 262: 12048–12053.PubMedGoogle Scholar
  56. 56.
    Dewald, B., T.G. Payne, and M. Baggiolini. 1984. Activation of NADPH oxidase of human neutrophils. Potentiation of chemotactic peptide by a diacylglycerol. Biochem. Biophys. Res. Commun. 125: 367–373.PubMedCrossRefGoogle Scholar
  57. 57.
    Sklar, L.A., P.A. Hyslop, Z.G. Oades, G.M. Omann, A.J. Jesaitis, R.G. Painter, and C.G. Cochrane. 1985. Signal transduction and ligand-receptor dynamics in the human neutrophil. Transient responses and occupancy-response relations at the formyl peptide receptor. J. Biol. Chem. 260: 11461–11467.PubMedGoogle Scholar
  58. 58.
    Ohta, H., F. Okajima, and M. Ui. 1985. Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J. Biol. Chem. 260: 15771–15780.PubMedGoogle Scholar
  59. 59.
    Okajima, F., T. Katada, and M. Ui. 1985. Coupling of the guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin. A possible role of the toxin substrate in Ca2+ -mobilizing receptormediated signal transduction. J. Biol. Chem. 260: 6761–6768.PubMedGoogle Scholar
  60. 60.
    Curnutte, J.T., B.M. Babior, and M.L. Karnovsky. 1979. Fluoride-mdiated activation of the respiratory burst in human neutrophils. J. Clin. Invest. 63: 637–647.PubMedCrossRefGoogle Scholar
  61. 61.
    Nasmith, P.E., G.B. Mills, and S. Grinstein. 1989. Guanine nucleotides induce tyrosine phosphorylation and activation of the respiratory burst in neutrophils. Biochem. J. 257: 893–897.PubMedGoogle Scholar
  62. 62.
    Buss, J.E., S.M. Mumby, P.J. Casey, A.G. Gilman, and B.M. Sefton. 1987. Myristoylated α subunits of guanine nucleotide-binding regulatory proteins. Proc. Natl. Acad. Sci. USA 84: 7493–7497.PubMedCrossRefGoogle Scholar
  63. 63.
    Jones, T.L.Z., W.F. Simonds, J.J. Merendino Jr, M.R. Brann, and A.M. Spiegel. 1990. Myristoylation of an inhibitory GTP-binding protein α-subunit is essential for its membrane attachment. Proc. Natl. Acad. Sci. USA 87: 568–572.PubMedCrossRefGoogle Scholar
  64. 64.
    Mumby, S.M., R.O. Heukeroth, J.I. Gordon, and A.G. Gilman. 1990. G-protein α-subunit expression, myristoylation, and membrane association in COS cells. Proc. Natl. Acad. Sci. USA 87: 728–732.PubMedCrossRefGoogle Scholar
  65. 65.
    Smith, C.D., C.C. Cox, and R. Snyderman. 1986. Receptor-coupled activation of phosphoinositidespecific phospholipase C by an N protein. Science 232: 97–100.PubMedCrossRefGoogle Scholar
  66. 66.
    Volpe, P., K.H. Krause, S. Hashimoto, F. Zorzato, T. Pozzan, J. Meldolesi, and D.P. Lew. 1988. “Calciosome,” a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc. Natl. Acad. Sci. USA 85: 1091–1095.PubMedCrossRefGoogle Scholar
  67. 67.
    Pozzan, T., D.P. Lew, C.B. Wollheim, and R.Y. Tsien. 1983. Is cytosolic ionized calcium regulating neutrophil activation? Science 221: 1413–1415.PubMedCrossRefGoogle Scholar
  68. 68.
    Billah, M.M., S. Eckel, T.J. Mullmann, R.W. Egan, and M.I. Siegel. 1989. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J. Biol. Chem. 264: 17069–17077.PubMedGoogle Scholar
  69. 69.
    von Tscharner, V., B. Prod horn, M. Baggiolini, and H. Reuter. 1986. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature 324: 369–372.CrossRefGoogle Scholar
  70. 70.
    Grzeskowiak, M., V. Delia Bianca, M.A. Cassatella, and F. Rossi. 1986. Complete dissociation between the activation of phosphoinositide turnover and of NADPH oxidase by formylmethionyl-leucyl-phenylalanine in human neutrophils depleted of Ca2+ and primed by subthreshold doses of phorbol 12, myristate 13, acetate. Biochem. Biophys. Res. Commun. 135: 785–794.PubMedCrossRefGoogle Scholar
  71. 71.
    Dewald, B., M. Thelen, and M. Baggiolini. 1988. Two transduction sequences are necessary for neutrophil activation by receptor agonists. J. Biol. Chem. 263: 16179–16184.PubMedGoogle Scholar
  72. 72.
    Repine, J.E., J.G. White, C.C. Clawson, and B.M. Holmes. 1974. The influence of phorbol myristate acetate on oxygen consumption by polymorphonuclear leukocytes. J. Lab. Clin. Med. 83: 911–920.PubMedGoogle Scholar
  73. 73.
    Wilson, E., M.C. Olcott, R.M. Bell, A.H.Jr. Merrill, and J.D. Lambeth. 1986. Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. Role of protein kinase C in activation of the burst. J. Biol. Chem. 261: 12616–12623.PubMedGoogle Scholar
  74. 74.
    Dewald, B., M. Thelen, M.P. Wymann, and M. Baggiolini. 1989. Staurosporine inhibits the respiratory burst and induces exocytosis in human neutrophils. Biochem. J. 264: 879–884.PubMedGoogle Scholar
  75. 75.
    Baggiolini, M., B. Dewald, J. Schnyder, W. Ruch, P.H. Cooper, and T.G. Payne. 1987. Inhibition of the phagocytosis-induced respiratory burst by the fungal metabolite wortmannin and some analogues. Exp. Cell Res. 169: 408–418.PubMedCrossRefGoogle Scholar
  76. 76.
    Colditz, I., R. Zwahlen, B. Dewald, and M. Baggiolini. 1989. In vivo inflammatory activity of neutrophil-activating factor, a novel chemotactic peptide derived from human monocytes. Am. J. Pathol. 134: 755–760.PubMedGoogle Scholar
  77. 77.
    Baggiolini, M., B. Dewald, and M. Thelen. 1988. Effects of PAF on neutrophils and mononuclear phagocytes. Prog. Biochem. Pharmacol. 22: 90–105.PubMedGoogle Scholar
  78. 78.
    Wymann, M.P., P. Kernen, D.A. Deranleau, and M. Baggiolini. 1989. Respiratory Burst Oscillations in Human Neutrophils and Their Correlation with Fluctuations in Apparent Cell Shape. J. Biol. Chem. in press.Google Scholar
  79. 79.
    Wymann, M.P., P. Kernen, T. Bengtsson, T. Andersson, M. Baggiolini, and D.A. Deranleau. 1990. Corresponding oscillations in neutrophil shape and filamentous actin content. J. Biol. Chem. 265: 619–622.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Marco Baggiolini
    • 1
  • Beatrice Dewald
    • 1
  • Alfred Walz
    • 1
  1. 1.Theodor-Kocher InstituteUniversity of BernBern 9Switzerland

Personalised recommendations