NAP-1/IL-8 in Rheumatoid Arthritis

  • Ivan J. D. Lindley
  • Miroslav Ceska
  • Peter Peichl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 305)


Neutrophil activating peptide 1, or interleukin-8 (NAP-1, IL-8), was isolated almost simultaneously by several groups as a neutrophil chemotactic or activating peptide from supernatants of endotoxin stimulated monocytes (1–5). The major form with 72 amino acids, and an approximate molecular weight of 8.4 kD, has since been shown to have activities on a variety of different cell types. It is chemotactic for neutrophils (PMN) and lymphocytes both in vitro and in vivo (6,2,4,7), and has been shown to stimulate PMN in vitro to degranulate and to exhibit respiratory burst (8,9), and thus has the basic attributes of an inflammatory mediator. Further actions which could be of great importance in inflammatory processes are chemotactic attraction of basophils, the triggering of IL-3 primed basophils to release leukotrienes and histamine (10), spasmogenic activity on airway smooth muscle (11), and effects on PMN adherence to endothelial cells (12).


Synovial Fluid Airway Smooth Muscle Arthritic Joint Synovial Fluid Sample Arthritic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walz, A., P. Peveri, H. Aschauer, and M. Baggiolini. 1987. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem. Biophys. Res. Comm. 149: 755–761PubMedCrossRefGoogle Scholar
  2. 2.
    Schröder, J., U. Mrowietz, E. Morita and E.Christophers 1987. Purification and partial biochemical characterisation of a human monocyte-derived, neutrophil activating peptide that lacks interleukin 1 activity. J. Immunol. 139: 3474–3483PubMedGoogle Scholar
  3. 3.
    Yoshimura, T., K. Matsushima, S. Tanaka, E. Robinson, E. Apella, J.J. Oppenheim and E.J. Leonard. 1987. Purification of a human monocyte-derived neutrophil chemotactic factor that shares sequence homology with other host defence cytokines. Proc. Natl. Acad. Sci. USA 84: 9233–9237.PubMedCrossRefGoogle Scholar
  4. 4.
    Van Damme, J., J. Van Beeumen, G. Opdenakker and A. Billeau. 1988. A novel NH2-terminal sequence- characterised human monokine possessing neutrophil chemotactic, skin reactive, and granulocytosis promoting activity. J. Exp. Med. 167: 1364–1376.PubMedCrossRefGoogle Scholar
  5. 5.
    Kownatzki, E., S. Uhrich and G. Grueninger. 1988. Functional properties of a novel neutrophil chemotactic factor derived from human monocytes. Immunibiol. 177: 352–362.CrossRefGoogle Scholar
  6. 6.
    Lindley, I., H, Aschauer, J.M. Seifert, C. Lam, W.Brunowsky, E. Kownatzki, M. Thelen, P. Peveri, B. Dewald, V. von Tscharner and M. Baggiolini. 1988. Synthesis and expression in E.coli of a gene encoding monocyte-derived neutrophil-activating factor: Biological equivalence between natural and recombinant neutrophil-activating factor. Proc. Natl. Acad. Sci. USA 85: 9199–9203.PubMedCrossRefGoogle Scholar
  7. 7.
    Larsen, C.G., A.O. Anderson, E. Apella, J.J. Oppenheim and K. Matsushima. 1989. The neutrophil activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243: 1464–1466.PubMedCrossRefGoogle Scholar
  8. 8.
    Peveri, P., A. Walz, B. Dewald and M. Baggiolini. 1988. A novel neutrophil-activating factor produced by human mononuclear phagocytes. J. Exp. Med. 167: 1547–1559.PubMedCrossRefGoogle Scholar
  9. 9.
    Thelen, M., P. Peveri, P. Kernen, V. von Tscharner, A. Walz and M. Baggiolini. 1988. Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB. J. 2: 2702–2706.PubMedGoogle Scholar
  10. 10.
    Dahinden, C.A., J. Kurimoto, A.L. De Weck, I. Lindley, B. Dewald and M. Baggiolini. 1989. The neutrophil-activating peptide NAF/NAP-1 induces histamine and leukotriene release by interleukin 3-primed basophils. J. Exp. Med. 170: 1787–1792.PubMedCrossRefGoogle Scholar
  11. 11.
    Burrows, L.J., P.J. Piper, I. Lindley, M. Baggiolini and J. Westwick. 1990. Characterisation of human recombinant neutrophil activating factor/interleukin 8-induced contraction of airway smooth muscle. In press in: Molecular and Cellular Biology of Cytokines. Alan R. Liss, Inc. N.Y. USAGoogle Scholar
  12. 12.
    Carveth, H.J., J.F. Bohnsack, T.M. Mclntyre, M. Baggiolini, S.M. Prescott and G.A. Zimmerman. 1989. Neutrophil activating factor (NAF) induces polymorphonuclear leukocyte adherence to endothelial cells and to sub-endothelial matrix proteins. Biochem. Biophys. Res. Comm. 162: 387–393.PubMedCrossRefGoogle Scholar
  13. 13.
    Einer, V., R. Strieter, S. Einer, M. Baggiolini, I. Lindley and S. Kunkel. 1990. Human retinal pigment epithelial cells produce neutrophil chemotactic factor in response to IL-1 and TNF. Amer. J. Pathol. 136: 745–750.Google Scholar
  14. 14.
    Dixit,V.M., S.L. Kunkel, V. Sarma, R.M.Strieter, H.J. Showell, P.A. Ward and R.M. Marks. 1989. Molecular cloning of an endothelial derived neutrophil chemotactic factor: identity with monocyte derived factor. FASEB. J. 3: A305Google Scholar
  15. 15.
    Larsen, C.G., A.O. Anderson, J.J.Oppenheim and K. Matsushima. 1989. Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumor necrosis factor. Immunology 68: 31–36.PubMedGoogle Scholar
  16. 16.
    Van Damme, J., R.A.D. Bunning, R. Conings, R. Graham, G. Russel and G. Opdenakker. 1990. Characterisation of granulocyte chemotactic activity from human cytokine stimulated chondrocytes as interleukin-8. Cytokine (in press).Google Scholar
  17. 17.
    Thornton, A.J., R. Strieter, I. Lindley, M. Baggiolini and S.L. Kunkel. 1990. Cytokine-induced gene expression of neutrophil chemotactic factor/interleukin 8 in human hepatocytes. J. Immunol. 144: 2609–2613.PubMedGoogle Scholar
  18. 18.
    Walz, A., and M. Baggiolini. 1989. A novel cleavage product of β-thromboglobulin formed in cultures of stimulated mononuclear cells activates human neutrophils. Biochem. Biophys. Res. Comm. 159: 969–975.PubMedCrossRefGoogle Scholar
  19. 19.
    Richmond, A., E. Balentien, H.G. Thomas, G. Flaggs, D.E. Barton, J. Spiess, R. Bordoni, U. Francke and R. Derynck. 1988. Molecular characterisation and chrosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to β-thromboglobulin. EMBO J. 7: 2025–2033.PubMedGoogle Scholar
  20. 20.
    Deuel, T.F., P.S. Keim, M. Farmer and R.L. Heinrikson. 1977. Amino acid sequence of human platelet factor 4. Proc. Natl. Acad. Sci. USA. 74: 2256–2258.PubMedCrossRefGoogle Scholar
  21. 21.
    Furutani, Y., H. Nomura, M. Notake, Y. Oyamada, T. Fukui, M. Yamada, C.G. Larsen, J.J. Oppenheim and K. Matsushima. 1989. Cloning and sequencing of the cDNA for human monocyte chemotactic and activating factor (MCAF) Biochem. Biophys. Res. Comm. 159: 249–255.PubMedCrossRefGoogle Scholar
  22. 22.
    Yoshimura T., N. Yuhki, S.K. Moore, E. Apella, M.I. Lerman and E.J. Leonard. 1989. Human monocyte chemoattractant protein-1 (MCP-1): Full length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Letts. 244: 487–493.CrossRefGoogle Scholar
  23. 23.
    Baggiolini, M., A. Walz and S. Kunkel. 1989. Neutrophil activating peptide 1/interleukin 8, a novel cytokine that activates neutrophils. J. Clin. Invest. 84: 1045–1049.PubMedCrossRefGoogle Scholar
  24. 24.
    Ceska, M., F. Effenberger, P. Peichl and E. Pursch. 1989. Purification and characterisation of monoclonal and polyclonal antibodies to neutrophil activating peptide: The development of highly sensitive ELISA methods for determination of NAP-1 and anti-NAP-1 antibodies. Cytokine 1: 136.Google Scholar
  25. 25.
    Ropes, M.W. 1958. Diagnostic criteria for rheumatoid arthritis. Ann. Rheum. Dis. 18: 49–54.Google Scholar
  26. 26.
    Seidl, G. and L. Malacek. 1989. Application of laboratory robotics to the automation of the turbidometric LAL endotoxin assay. Lab. Robot. and Automation 1: 215–225.Google Scholar
  27. 27.
    Whicher, J.T., A.M. Bell and P.J. Southall. 1981. Inflammation measurements in clinical management. Diagn. Med. 4: 62–80.Google Scholar
  28. 28.
    Bhardwaj, N., U. Santhanam, L.L. Lau, S.B. Tatter, J. Ghrayeb, M. Rivelis, R.M. Steinman, P.B. Sehgal and L.T. May. 1989. IL-6/IFNb2 in synovial effusions of patients with rheumatoid arthritis and other arthritides. J. Immunol. 143: 2153–2159.PubMedGoogle Scholar
  29. 29.
    Waage, A, C. Kaufmann, T. Espevik and G. Husby. 1989. Interleukin-6 in synovial fluid from patients with arthritis. Clin. Immunol. Immunopathol. 50: 394–398.PubMedCrossRefGoogle Scholar
  30. 30.
    Suzuki, H., T. Akama, M. Okane, I. Kono, Y. Matsui, K. Yamane and H. Kashiwagi. 1989. Interleukin-1-inhibitory IgG in sera from some patients with rheumatoid arthritis. Arthritis and Rheumatism 32: 1528–1538.PubMedCrossRefGoogle Scholar
  31. 31.
    Fomsgaard, A, M. Svenson and K. Bendtzen. 1989. Auto-antibodies to tumour necrosis factor in healthy humans and patients with inflammatory diseases and Gram-negative bacterial infections. Scand. J. Immunol. 30: 219–223.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Ivan J. D. Lindley
    • 1
  • Miroslav Ceska
    • 1
  • Peter Peichl
    • 1
  1. 1.Sandoz ForschungsinstitutViennaAustria

Personalised recommendations