Advertisement

Chemotactic Cytokines in Inflammatory Skin Disease

  • Richard Camp
  • Kevin Bacon
  • Nicholas Fincham
  • Kay Mistry
  • Janet Ross
  • Frances Lawlor
  • Daniel Quinn
  • Andrew Gearing
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 305)

Abstract

The production of cytokines in human skin in vivo has been investigated and found to be more selective than studies in vitro have suggested. Thus, stratum corneum samples from the skin lesions of psoriasis contain interleukin 8 (IL-8)-like material, but assay for a range of other compounds suggested that no other defined, biologically active cytokine was present in increased levels when compared with those in control heel stratum corneum samples. Selective cytokine release was also found on analysis of chamber fluid samples from the skin lesions of the cutaneous T-cell lymphoma, mycosis fungoides. Assay of normal epidermal samples has shown the presence of biologically active amounts of IL-1 like material, chromatographic purification and the use of neutralizing antibodies indicating the presence of IL-1α but negligible IL-1β activity in normal heel stratum corneum extracts. No other biologically active cytokine has been detected in normal skin. The IL-1α-like material recoverable from normal human epidermis possesses potent inflammatory properties when injected intradermally, but appears not to be biologically available under normal in vivo conditions, possibly through intracellular retention in keratinocytes, membrane association or control by an inhibitor. The release of preformed IL-1 following membrane perturbation or other events may constitute a primary mechanism for the induction of inflammation in human skin. For reasons to be outlined below, IL-1 may be less important in the maintenance of chronic inflammatory changes, at least in psoriasis, IL-8 possibly playing a more significant role.

Keywords

High Performance Liquid Chromatography Stratum Corneum Normal Skin Mycosis Fungoides Intradermal Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brain, S.D., R.D.R. Camp, F.M. Cunningham, P.M. Dowd, M.W. Greaves, and A. Kobza Black. 1984. Leukotriene B4-like material in scale of psoriatic skin lesions. Br. J. Pharmacol. 83: 313–317.PubMedGoogle Scholar
  2. 2.
    Brain, S.D., R.D.R. Camp, P.M. Dowd, A. Kobza Black, and M.W. Greaves. 1984. The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J. Invest. Dermatol. 83: 70–73.PubMedCrossRefGoogle Scholar
  3. 3.
    WooUard, P.M. 1986. Stereochemical difference between 12-hydroxy-5,8,10,14-eicosatetraenoic acid in platelets and psoriatic lesions. Biochem. Biophys. Res. Commun. 136: 169–176.CrossRefGoogle Scholar
  4. 4.
    Mallet, A.I., and F.M. Cunningham. 1985. Structural identification of platelet activating factor in psoriatic scale. Biochem. Biophys. Res. Commun. 126: 192–198.PubMedCrossRefGoogle Scholar
  5. 5.
    Schröder, J.M., and E. Christophers. 1986. Identification of C5a des arg and an anionic neutrophil activating peptide (ANAP) in psoriatic scales. J. Invest. Dermatol. 87: 53–58.PubMedCrossRefGoogle Scholar
  6. 6.
    Camp, R.D.R., N.J. Fincham, F.M. Cunningham, M.W.Greaves, J. Morris, and A.C. Chu. 1986. Psoriasis skin lesions contain biologically active amounts of an interleukin 1-like compound. J. Immunol. 137: 3469–3474.PubMedGoogle Scholar
  7. 7.
    Fincham, N.J., R.D.R. Camp, AJ.H. Gearing, C.R. Bird, and F.M. Cunningham. 1988. Neutrophil chemoattractant and IL-1-like activity in samples from psoriatic skin lesions. Further characterisation. J. Immunol. 140: 4294–4299.PubMedGoogle Scholar
  8. 8.
    Gearing, A.J.H., N.J. Fincham, C.R. Bird, A.M. Wadhwa, A. Meager, J.E. Cartwright, and Camp R.D.R. 1990. Cytokines in skin lesions of psoriasis. Cytokine. 2: 68–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Schröder, J.M., and E. Christophers. 1989. Amino acid sequence characterization of two ultrastructurally related neutrophil activating peptides obtained from lesional psoriatic scales. J. Invest. Dermatol. 92: 515(abstract).CrossRefGoogle Scholar
  10. 10.
    Grossman, R,M., J. Krueger, D. Yourish, A. Granelli-Piperno, D.P. Murphy, L.T. May, T.S. Kupper, P.B. Seghai, A.B. Gottlieb. 1989. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc. Natl. Acad. Sci. USA. 86: 6367–6371.PubMedCrossRefGoogle Scholar
  11. 11.
    Prens E.P., J. van Damme, M. Bakkus, K. Brakel, R. Benner, and T. van Joost. 1989. IL-1 and IL-6 in psoriasis. J. invest. Dermatol. 93: 570 (abstract).Google Scholar
  12. 12.
    Larsen, C.G., A.O. Anderson, E. Appella, J.J. Oppenheim, and K. Matsushima, 1989. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science. 243: 1464–1466.PubMedCrossRefGoogle Scholar
  13. 13.
    Bacon, K.B., J. Westwick, and R.D.R. Camp. 1989. Potent and specific inhibition of IL-8-, IL-Iα- and IL-1β-induced lymphocyte migration by calcium channel antagonists. Biochem. Biophys. Res. Commun. 165: 349–354.PubMedCrossRefGoogle Scholar
  14. 14.
    Krueger, G., C. Jorgensen, C. Miller, J. Schröder, M. Sticherling, and E. Christophers. 1990. Effects of IL-8 on epidermal proliferation. J. Invest. Dermatol. 94: 545 (abstract).CrossRefGoogle Scholar
  15. 15.
    Barker, J.N.W.N., V. Sharma, R.S. Mitra, V.M. Dixit, and B.J. Nickoloff. 1990. Marked synergism between tumour necrosis factor-α and interferon-in regulating keratinocyte-derived adhesion molecules and chemotactic factors.J. Clin. Invest. 85: 606–608.CrossRefGoogle Scholar
  16. 16.
    Barker, J.N.W.N., M.L. Jones, C. Swenson, R.S. Mitra, J.T.Elder, J.C. Fantone, P.A. Ward, V.M. Dixit, and B.J. Nickoloff. 1990. Keratinocyte (KC) production of a biologically active monocyte chemoattractant. J. Invest. Dermatol. 94: 505 (abstract).Google Scholar
  17. 17.
    Schröder, J.M., M. Sticherling, H.H. Heneicke, W.C. Preissner, and E. Christophers, 1990. IL-1 or tumour necrosis factor-α stimulate release of three NAP-1/IL-8-related neutrophil chemotactic proteins in human dermal fibroblasts. J.Immunol. 144: 2223–2232.PubMedGoogle Scholar
  18. 18.
    Schröder, J.M., and E. Christophers. 1990. Determination of IL-8-related cytokines in the stratum corneum of chronic as well as acute inflammatory skin diseases. J. Invest. Dermatol. (abstract in press).Google Scholar
  19. 19.
    Leonard E.J., A. Skeel, T. Yoshimura, K.Noer, S. Kutvirt, and D. van Epps. 1990. Leukocyte specificity and binding of human neutrophil attractant/activation protein-1. J.Immunol. 144: 1323–1330.PubMedGoogle Scholar
  20. 20.
    Bacon, K.B., and R.D.R. Camp. 1989. Calcium channel antagonists inhibit leukotriene (LT)B4 and interleukin(IL) 1α-induced lymphocyte migration. Skin Pharmacol. 2: 47 (abstract).Google Scholar
  21. 21.
    Bacon, K.B., and R.D.R. Camp. 1990. Interleukin (IL)-8-induced in vitro human lymphocyte migration is inhibited by cholera and pertussis toxins and inhibitors of protein kinase C. Biochem. Biophys. Res. Commun., in press.Google Scholar
  22. 22.
    Leonard, E., T. Yoshimura, S. Tanaka, and M. Raffeld. 1989. Neutrophil infiltration caused by intradermal injection of neutrophil attractant protein-1 (NAP-1/IL-8)into human skin. Cytokine 1: 151 (abstract).Google Scholar
  23. 23.
    Quinn, D.G., and R.D.R. Camp. 1990. Novel monocyte attractants in stratum corneum from psoriatic lesions. J. Invest. Dermatol. 94: 569 (abstract).Google Scholar
  24. 24.
    Lawlor, F., N.P. Smith, R.D.R. Camp, K.B. Bacon, A. Kobza-Black, M.W. Greaves, and A.J.H. Gearing. 1990. Skin exudate levels of interleukin 6, interleukin-1, and other cytokines in mycosis fungoides. Br. J. Dermatol. in press.Google Scholar
  25. 25.
    Dowd, P., B.A. Hudspith, R.M. Barr, and J.A. Miller. 1987. Release in vivo of interleukin-1 (IL-1)-like activity by human skin. Clin. Exp. Immunol. 67: 608–610.Google Scholar
  26. 26.
    Tron, V.A., D. Rosenthal, and D.N. Sauder. 1988. Epidermal interleukin-1 is increased in cutaneous T-cell lymphoma. J. Invest. Dermatol. 90: 373–381.CrossRefGoogle Scholar
  27. 27.
    Bacon, K., A. Gearing, and R. Camp. 1990. Induction of in vitro human lymphocyte migration by interleukin 3, interleukin 4, and interleukin 6. Cytokine. 2: 100–105.PubMedCrossRefGoogle Scholar
  28. 28.
    Gahring, L.C., A. Buckley, and R.A. Daynes. 1985.Presence of epidermal-derived thymocyte activating factor/interleukin 1 in normal human stratum corneum. J. Clin. Invest. 76: 1585–1591.PubMedCrossRefGoogle Scholar
  29. 29.
    Hauser, G., J.H. Saurat, A. Schmitt, F. Jaunin and J.M. Dayer. 1986. Interleukin 1 is present in normal human epidermis. J. Immunol. 136: 3317–3323.PubMedGoogle Scholar
  30. 30.
    Camp, R., N. Fincham, J. Ross, C. Bird, and A. Gearing. 1990. Potent inflammatory properties in human skin of interleukin-1α-like material isolated from normal skin. J. Invest. Dermatol. 94: 735–741.PubMedCrossRefGoogle Scholar
  31. 31.
    Granstein, R.D., R. Margolis and S.B. Mizel. 1986. In vivo inflammatory activity of epidermal cell-derived thymocyte activating factor and recombinant interleukin 1 in the mouse. J. Clin. Invest. 77: 1020–1027.PubMedCrossRefGoogle Scholar
  32. 32.
    De Young, L.M., D.A. Spires, J. Kheifets, and T.G. Terrell. 1987. Biology and pharmacology of recombinant human interleukin-1β-induced rat ear inflammation. Agents and Actions. 21: 325–327.PubMedCrossRefGoogle Scholar
  33. 33.
    Rampart, M., and T.J. Williams. 1988. Evidence that neutrophil accumulation induced by interleukin-1 requires both local protein synthesis and neutrophil CD18 antigen expression in vitro. Br. J. Pharmacol. 94: 1143–1148.PubMedGoogle Scholar
  34. 34.
    Dowd, P.M., R.D.R. Camp, and M.W. Greaves. 1988. Human recombinant interleukin-1α is proinflammatory in normal skin. Skin Pharmacol. 1: 30–37.PubMedCrossRefGoogle Scholar
  35. 35.
    Kupper, T.S., D.W. Ballard, A.O. Chua, J.S. McGuire, P.M.Flood, M.W. Horowitz, R. Langdon, L. Lightfoot, and U. Gubler. 1986. Human keratinocytes contain mRNA indistinguishable from monocyte interleukin 1α and β mRNA. J. Exp. Med. 164: 2095–2100.PubMedCrossRefGoogle Scholar
  36. 36.
    Reitamo, S,. H.S.I. Antilla, L. Didierjean, J-H. Saurat. 1990. Immunohistochemical identification of interleukin 1α and β in human eccrine sweat-gland apparatus. Br. J. Dermatol. 122: 315–323.PubMedCrossRefGoogle Scholar
  37. 37.
    Georgilis, K., C. Schaefer, C.A. Dinarello. and M.S. Klempner. 1987. Human recombinant interleukin 1β has no effect on intracellular calcium or on functional responses of human neutrophils. J. Immunol. 138: 3403–3407.PubMedGoogle Scholar
  38. 38.
    Yoshimura, T., K. Matsushima, J.J. Oppenheim, and E.J. Leonard. 1987. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterisation and separation from interleukin 1 (IL-1). J. Immunol. 139: 12788–793.Google Scholar
  39. 39.
    Westmacott, D., J. Wadsworth, and D.P. Bloxham. 1987. Chemotactic activity of recombinant human interleukin 1. Agents and Actions. 21: 323–324.PubMedCrossRefGoogle Scholar
  40. 40.
    Maloff, B.L., J.E. Shaw, and D. Fox. 1988. A Chemotaxis assay using human polymorphonuclear leukocytes stimulated by IL-1. J. Immunol. Methods. 112: 145–146.PubMedCrossRefGoogle Scholar
  41. 41.
    Parker, K.P., W.R. Benjamin, K.L. Kafka, and P.L. Kilian. 1989. Presence of IL-1 receptors on human and murine neutrophils. Relevance to IL-1-mediated affects in inflammation. J. Immunol. 142: 537–542.PubMedGoogle Scholar
  42. 42.
    Ross, J.S., K.B. Bacon, and R.D.R. Camp. 1990. Potent and selective inhibition of in vitro lymphocyte migration by cyclosporin and dexamethasone. Immunopharmacol. Immunotoxicol. 12: in press.Google Scholar
  43. 43.
    Hunninghake, G.W., A.J. Glazier, M.M. Monick, and C.A.Dinarello. 1987. Interleukin 1 is a chemotactic factor for human T-lymphocytes. Am. Rev. Resp. Dis. 135: 66–71.PubMedGoogle Scholar
  44. 44.
    Miossec, P., C-L. Yu, and M. Ziff. 1984. Lymphocyte chemotactic activity of human interleukin 1. J. Immunol. 133: 2007–2011.PubMedGoogle Scholar
  45. 45.
    Rossi, V., F. Brevario, P. Ghezzi, E. Dejana, and A. Mantovani. 1985. Prostacyclin synthesis induced in vascular cells by interleukin 1. Science. 229: 174–176.PubMedCrossRefGoogle Scholar
  46. 46.
    Bussolini, F., F. Brevario, C. Tetta, M. Aglietta, A. Mantovani, and E. Dejana. 1986. Interleukin 1 stimulates platelet-activating factor production in cultured human endothelial cells. J. Clin. Invest. 77: 2027–2033.CrossRefGoogle Scholar
  47. 47.
    Beasley, D., R.A. Cohen, and N.G. Levinsky. 1989. Interleukin 1 inhibits contraction of vascular smooth muscle. J. Clin. Invest. 83: 331–335.PubMedCrossRefGoogle Scholar
  48. 48.
    Bacon, K.B., R.D.R. Camp, F.M. Cunningham, and P.M. Woollard. 1988. Contrasting in vitro chemotactic activity of the hydroxyl enantiomers of 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Br. J. Pharmacol. 95: 966–975.PubMedGoogle Scholar
  49. 49.
    Bacon, K.B., N.J. Fincham, and R.D.R. Camp. 1990. Stimulation of lymphocyte migration by a novel low molecular weight compound in normal skin and plasma. Eur. J. Immunol. 20: 565–571.PubMedCrossRefGoogle Scholar
  50. 50.
    Zigmond, S.H., and J.G. Hirsch. 1973. Leukocyte locomotion and Chemotaxis. J. Exp. Med. 137: 387–410.PubMedCrossRefGoogle Scholar
  51. 51.
    Kornfeld, H., J.S. Berman, D.J. Beer. and D.M. Center.1985. Induction of human T lymphocyte motility by interleukin 2. J. Immunol. 137: 3887–3890.Google Scholar
  52. 52.
    Robbins, R.A., L. Klassen, J. Rasmussen, M.E.M. Clayton, and W.D. Russ. 1986. Interleukin-2-induced Chemotaxis of human T-lymphocytes. J. Lab. Clin. Med. 108: 340–345.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Richard Camp
    • 1
  • Kevin Bacon
    • 1
  • Nicholas Fincham
    • 1
  • Kay Mistry
    • 1
  • Janet Ross
    • 1
  • Frances Lawlor
    • 1
  • Daniel Quinn
    • 1
  • Andrew Gearing
    • 1
    • 2
  1. 1.Institute of DermatologySt. Thomas’s HospitalLondonUK
  2. 2.British BiotechnologyOxfordUK

Personalised recommendations